Bounding the Trellis State Complexity of Algebraic Geometric Codes

Abstract.Let be an algebraic geometric code of dimension k and length n constructed on a curve over Fq. Let be the state complexity of and the Wolf upper bound on . We introduce a numerical function R that depends on the gonality sequence of and show that where g is the genus of . As a matter of fact, R(2g−2)≤g−(γ2−2) with γ2 being the gonality of over Fq, and thus in particular we have that

[1]  G. Norton,et al.  On Trellis Structures for Reed-Muller Codes , 2000 .

[2]  G. David Forney,et al.  Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.

[3]  Gr Ruud Pellikaan,et al.  On special divisors and the two variable zeta function of algebraic curves over finite fields , 1996 .

[4]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[5]  Graham H. Norton,et al.  Determining When the Absolute State Complexity of a Hermitian Code Achieves Its DLP Bound , 2001, SIAM J. Discret. Math..

[6]  Ruud Pellikaan,et al.  On the gonality of curves, abundant codes and decoding , 1992 .

[7]  Shu Lin,et al.  On complexity of trellis structure of linear block codes , 1993, IEEE Trans. Inf. Theory.

[8]  Johan P. Hansen,et al.  Algebraic Geometry Codes , 2005 .

[9]  Ruud Pellikaan,et al.  Equality of geometric Goppa codes and equivalence of divisors , 1993 .

[10]  Domingo Ramirez-Alzola On the state complexity of hyperelliptic codes , 2003, IEEE Trans. Inf. Theory.

[11]  G. Korchmáros,et al.  On Plane Maximal Curves , 1998, Compositio Mathematica.

[12]  Douglas J. Muder Minimal trellises for block codes , 1988, IEEE Trans. Inf. Theory.

[13]  Yair Be'ery,et al.  The twisted squaring construction, trellis complexity, and generalized weights of BCH and QR codes , 1996, IEEE Trans. Inf. Theory.

[14]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[15]  Carlos Munuera,et al.  On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.

[16]  Alexander Vardy,et al.  Maximum-Likelihood Soft Decision Decoding of Bch Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[17]  Carlos Munuera,et al.  A Goppa-like bound on the trellis state complexity of algebraic-geometric codes , 2002, IEEE Trans. Inf. Theory.

[18]  Yair Be'ery,et al.  Bounds on the trellis size of linear block codes , 1993, IEEE Trans. Inf. Theory.

[19]  Henning Stichtenoth,et al.  Group codes on certain algebraic curves with many rational points , 1990, Applicable Algebra in Engineering, Communication and Computing.

[20]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.

[21]  Graham H. Norton,et al.  Lower Bounds on the State Complexity of Geometric Goppa Codes , 2002, Des. Codes Cryptogr..

[22]  T. Willmore Algebraic Geometry , 1973, Nature.

[23]  P. Vijay Kumar,et al.  On the weight hierarchy of geometric Goppa codes , 1994, IEEE Trans. Inf. Theory.

[24]  Yair Be'ery,et al.  Bounds on the state complexity of codes from the Hermitian function field and its subfields , 2000, IEEE Trans. Inf. Theory.