On dense strongly Z2s-1-connected graphs

Let G be a graph and s 0 be an integer. If, for any function b : V ( G ) ? Z 2 s + 1 satisfying ? v ? V ( G ) b ( v ) ? 0 ( mod 2 s + 1 ) , G always has an orientation D such that the net outdegree at every vertex v is congruent to b ( v ) mod 2 s + 1 , then G is strongly Z 2 s + 1 -connected. For a graph G , denote by α ( G ) the cardinality of a maximum independent set of G . In this paper, we prove that for any integers s , t 0 and real numbers a , b with 0 < a < 1 , there exist an integer N ( a , b , s ) and a finite family Y ( a , b , s , t ) of non-strongly Z 2 s + 1 -connected graphs such that for any connected simple graph G with order n ? N ( a , b , s ) and α ( G ) ? t , if G satisfies one of the following conditions: (i)for any edge u v ? E ( G ) , max { d G ( u ) , d G ( v ) } ? a n + b , or(ii)for any u , v ? V ( G ) with d i s t G ( u , v ) = 2 , max { d G ( u ) , d G ( v ) } ? a n + b , then G is strongly Z 2 s + 1 -connected if and only if G is not contractible to a member in the finite family Y ( a , b , s , t ) .

[1]  Yanting Liang,et al.  On strongly Z2s-1-connected graphs , 2014, Discret. Appl. Math..

[2]  Nathan Linial,et al.  Group connectivity of graphs - A nonhomogeneous analogue of nowhere-zero flow properties , 1992, J. Comb. Theory, Ser. B.

[3]  Carsten Thomassen,et al.  The weak 3-flow conjecture and the weak circular flow conjecture , 2012, J. Comb. Theory, Ser. B.

[4]  Jeff Gipson,et al.  Cycles , 1992, The Americas.

[5]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[6]  Hong-Jian Lai Mod (2p + 1)-Orientations and $K1,2p+1-Decompositions , 2007, SIAM J. Discret. Math..

[7]  Hong-Jian Lai,et al.  Degree sum condition for Z3-connectivity in graphs , 2010, Discret. Math..

[8]  Ye-Min Wu,et al.  Integer flows and Modulo Orientations , 2012 .

[9]  Hong-Jian Lai,et al.  Characterizations of minimal graphs with equal edge connectivity and spanning tree packing number , 2014 .

[10]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[11]  Hong-Jian Lai,et al.  Characterizations of Strength Extremal Graphs , 2014, Graphs Comb..

[12]  Jin Yan,et al.  Contractible configurations on 3-flows in graphs satisfying the Fan-condition , 2013, Eur. J. Comb..

[13]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[14]  Paul A. Catlin The reduction of graph families closed under contraction , 1996, Discret. Math..

[15]  C. Thomassen,et al.  Claw-decompositions and tutte-orientations , 2006 .

[16]  Genghua Fan,et al.  Degree sum and nowhere-zero 3-flows , 2008, Discret. Math..

[17]  Hong-Jian Lai,et al.  Degree condition and Z3-connectivity , 2012, Discret. Math..

[18]  Martin Kochol An Equivalent Version of the 3-Flow Conjecture , 2001, J. Comb. Theory, Ser. B.

[19]  Genghua Fan,et al.  Ore Condition and Nowhere-Zero 3-Flows , 2008, SIAM J. Discret. Math..

[20]  Hong-Jian Lai Nowhere-zero 3-flows in locally connected graphs , 2003, J. Graph Theory.

[21]  Cun-Quan Zhang,et al.  Nowhere-zero 3-flows and modulo k-orientations , 2013, J. Comb. Theory, Ser. B.

[22]  Rong Luo,et al.  Ore-condition and Z3-connectivity , 2008, Eur. J. Comb..

[23]  Hong-Jian Lai,et al.  Graph family operations , 2001, Discret. Math..

[24]  F. Jaeger ON CIRCULAR FLOWS IN GRAPHS , 1984 .

[25]  Hong-Jian Lai,et al.  On Mod (2s+1)-Orientations of Graphs , 2014, SIAM J. Discret. Math..