Modulus‐based synchronous multisplitting iteration methods for linear complementarity problems

To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based synchronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numerical results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation.

[1]  Apostolos Hadjidimos,et al.  The principle of extrapolation and the Cayley Transform , 2008 .

[2]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[3]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[4]  Apostolos Hadjidimos,et al.  Nonstationary Extrapolated Modulus Algorithms for the solution of the Linear Complementarity Problem , 2009 .

[5]  Li-Li Zhang,et al.  Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems , 2012, Numerical Algorithms.

[6]  Mei-Qun Jiang,et al.  A modified modulus method for symmetric positive‐definite linear complementarity problems , 2009, Numer. Linear Algebra Appl..

[7]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[8]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[9]  David J. Evans,et al.  Matrix Multisplitting Methods with Applications to Linear Complementarity Problems∶ Parallel Asynchronous Methods , 2002, Int. J. Comput. Math..

[10]  David J. Evans,et al.  Matrix multisplitting relaxation methods for linear complementarity problems , 1997, Int. J. Comput. Math..

[11]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[12]  Layne T. Watson,et al.  Iterative algorithms for the linear complementarity problem , 1986 .

[13]  Jun-Liang Dong,et al.  Inexact multisplitting methods for linear complementarity problems , 2009 .

[14]  D. Szyld,et al.  H-Splittings and two-stage iterative methods , 1992 .

[15]  A. Frommer,et al.  Convergence of relaxed parallel multisplitting methods , 1989 .

[16]  D. O’Leary A generalized conjugate gradient algorithm for solving a class of quadratic programming problems , 1977 .

[17]  A. Brandt,et al.  Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .

[18]  Li-Li Zhang,et al.  Two-step modulus-based matrix splitting iteration method for linear complementarity problems , 2011, Numerical Algorithms.

[19]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[20]  Masao Fukushima,et al.  A multisplitting method for symmetric linear complementarity problems , 1995 .

[21]  Apostolos Hadjidimos,et al.  On Iterative Solution for Linear Complementarity Problem with an H+-Matrix , 2012, SIAM J. Matrix Anal. Appl..

[22]  Zhong-Zhi Bai,et al.  A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations , 1996 .

[23]  Dong-Hui Li,et al.  Conjugate gradient method for the linear complementarity problem with S-matrix , 2008, Math. Comput. Model..

[24]  W. Deren On the convergence of the parallel multisplitting AOR algorithm , 1991 .

[25]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[26]  Zhong-Zhi Bai,et al.  The convergence of parallel iteration algorithms for linear complementarity problems , 1996 .

[27]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[28]  Van Bokhoven Piecewise-linear modelling and analysis , 1981 .

[29]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[30]  Apostolos Hadjidimos,et al.  Accelerated overrelaxation method , 1978 .

[31]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[32]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[33]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[34]  Li-Li Zhang Two-Stage Multisplitting Iteration Methods Using Modulus-Based Matrix Splitting as Inner Iteration for Linear Complementarity Problems , 2014, J. Optim. Theory Appl..

[35]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .