A Contribution to the Understanding of Osmoregulation in Two Tooth-Carps Occupying Different Osmotic Niches

[1]  H. Esmaeili,et al.  DNA barcoding and species delimitation of the Old World tooth-carps, family Aphaniidae Hoedeman, 1949 (Teleostei: Cyprinodontiformes) , 2020, PloS one.

[2]  M. Motamedi,et al.  Intrapopulation variation of otolith associated with ontogeny and morphological dimorphism in Hormuz tooth‐carp Aphanius hormuzensis (Teleostei: Aphaniidae) , 2020 .

[3]  S. Soltanian,et al.  Expression Patterns of Three Regulatory Genes in Caudal Fin Regeneration of the Euryhaline Killifish, Aphanius hormuzensis (Teleostei: Aphaniidae) , 2019, Iranian Journal of Science and Technology, Transactions A: Science.

[4]  M. Motamedi,et al.  Kidney regeneration in Aphanius furcatus (Teleostei: Aphaniidae) after damage induced by gentamicin and evaluation of vitamin C in toxicity reduction , 2019 .

[5]  H. Esmaeili,et al.  Systematics and historical biogeography of the Aphanius dispar species group (Teleostei: Aphaniidae) and description of a new species from Southern Iran , 2018 .

[6]  M. Motamedi,et al.  Histopathological Changes of Hepatorenal Toxicity Induced by Gentamicin in Killifish, Aphanius hormuzensis (Aphaniidae) and its Kidney Regeneration Through Nephron Neogenesis , 2018, Journal of Ichthyology.

[7]  M. Kara,et al.  Life history of the Mediterranean killifish Aphanius fasciatus in brackish water habitat of Algerian low Sahara , 2017, Environmental Biology of Fishes.

[8]  D. Erpenbeck,et al.  A new and unique species of the genus Aphanius Nardo, 1827 (Teleostei: Cyprinodontidae) from Southern Iran: A case of regressive evolution , 2014 .

[9]  H. Esmaeili,et al.  Phylogenetic relationships of the tooth-carp Aphanius (Teleostei: Cyprinodontidae) in the river systems of southern and south-western Iran based on mtDNA sequences , 2014 .

[10]  A. Whitehead,et al.  Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill , 2012, Journal of Experimental Biology.

[11]  P. Schulte,et al.  Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar) , 2011, Journal of Experimental Biology.

[12]  S. Perry,et al.  Carbonic anhydrase and acid–base regulation in fish , 2009, Journal of Experimental Biology.

[13]  P. Hwang,et al.  Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[14]  Mayu Inokuchi,et al.  Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia , 2009, Journal of Experimental Biology.

[15]  Mayu Inokuchi,et al.  Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[16]  T. Kaneko,et al.  Evidence for an apical Na–Cl cotransporter involved in ion uptake in a teleost fish , 2008, Journal of Experimental Biology.

[17]  D. Evans Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[18]  P. Hwang,et al.  New insights into fish ion regulation and mitochondrion-rich cells. , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[19]  E. Hoffmann,et al.  Swelling‐activated ion channels: functional regulation in cell‐swelling, proliferation and apoptosis , 2006, Acta physiologica.

[20]  A. Farrell,et al.  Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration , 2005, Journal of Experimental Biology.

[21]  Y. Wakamatsu,et al.  Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant. , 2005, Kidney international.

[22]  A. Sanz,et al.  Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater‐acclimated specimens , 2004 .

[23]  D. Duan,et al.  Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. , 2003, American journal of physiology. Heart and circulatory physiology.

[24]  S. Lindenthal,et al.  Cloning and characterisation of amphibian ClC-3 and ClC-5 chloride channels. , 2002, Biochimica et biophysica acta.

[25]  W. Marshall,et al.  Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis. , 2002, The Journal of experimental zoology.

[26]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[27]  D. Duan,et al.  Functional inhibition of native volume‐sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti‐ClC‐3 antibody , 2001, The Journal of physiology.

[28]  A. Mobasheri,et al.  Na+, K+-ATPase Isozyme Diversity; Comparative Biochemistry and Physiological Implications of Novel Functional Interactions , 2000, Bioscience reports.

[29]  D. Duan,et al.  A Serine Residue in ClC-3 Links Phosphorylation–Dephosphorylation to Chloride Channel Regulation by Cell Volume , 1999, The Journal of general physiology.

[30]  S. Madsen,et al.  Osmoregulation and salinity effects on the expression and activity of Na+,K(+)-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). , 1998, The Journal of experimental zoology.

[31]  D. Duan,et al.  Molecular identification of a volume-regulated chloride channel , 1997, Nature.

[32]  C. Cioni,et al.  Fine structure of chloride cells in freshwater- and seawater-adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters) , 1991 .

[33]  P. Prunet,et al.  Ultrastructural features of chloride cells in the gill epithelium of the Atlantic salmon, Salmo salar, and their modifications during smoltification. , 1988, The American journal of anatomy.

[34]  M. Pisam,et al.  Two types of chloride cells in the gill epithelium of a freshwater-adapted euryhaline fish: Lebistes reticulatus; their modifications during adaptation to saltwater. , 1987, The American journal of anatomy.

[35]  K. Karnaky Structure and Function of the Chloride Cell of Fundulus heteroclitus and Other Teleosts , 1986 .

[36]  R. Stagg,et al.  Na+, K+ ATPase, quabain binding and quabain-sensitive oxygen consumption in gills fromPlatichthys flesus adapted to seawater and freshwater , 1982, Journal of comparative physiology.

[37]  M. Pisam Membranous systems in the “chloride cell” of teleostean fish gill; their modifications in response to the salinity of the environment , 1981, The Anatomical record.

[38]  J. Sargent,et al.  Changes in the levels of chloride cells and (Na+ + K+)-dependent ATPase in the gills of yellow and silver eels adapting to seawater. , 1977, The Journal of experimental zoology.

[39]  A. Pappalardo,et al.  Morphological variation among populations of Aphanius fasciatus Nardo, 1827 (Teleostei, Cyprinodontidae) from the Mediterranean , 2007 .

[40]  T. Jentsch,et al.  Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. , 2005, Annual review of physiology.

[41]  K. Choe,et al.  The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. , 2005, Physiological reviews.

[42]  S. Utida,et al.  Development and degeneration of the chloride cell during seawater and freshwater adaptation of the Japanese eel, Anguilla japonica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[43]  O. Behmer,et al.  Manual de técnicas para histologia: normal e patológica , 2003 .