A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite

Conjugal transfer of Agrobacterium octopine-type Ti plasmids is activated by octopine, a metabolite released from plant tumors. Octopine causes conjugal donors to secrete a pheromone, Agrobacterium autoinducer (AAI), and exogenous AAI further stimulates conjugation. The putative AAI synthase and an AAI-responsive transcriptional regulator were found to be encoded by the Ti plasmid traI and traR genes, respectively, and the expression of traR was induced by octopine. The octopine-type traR gene product is highly homologous to the TraR protein recently characterized from a nopaline-type Ti plasmid. TraR and TraI are homologous to the LuxR and LuxI regulatory proteins of Vibrio fischeri, and AAI is similar in structure to the diffusable V. fischeri autoinducer, the inducing ligand of LuxR. TraR activated target genes in the presence of AAI and also activated traR and traI themselves, creating two positive-feedback loops. TraR-AAI-mediated activation in wild-type Agrobacterium strains was dramatically enhanced by culturing on solid media, suggesting a possible role in cell density sensing.

[1]  A. Kerr,et al.  Transfer of virulence in vivo and in vitro in Agrobacterium , 1977, Nature.

[2]  J. Downie,et al.  Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae , 1992, Journal of bacteriology.

[3]  G. Ditta,et al.  Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Van Montagu,et al.  Physical mapping of DNA base sequence homologies between an octopine and a nopaline Ti plasmid of Agrobacterium tumefaciens. , 1981, Journal of molecular biology.

[5]  M. Dworkin Microbial cell-cell interactions , 1991 .

[6]  M. Pirhonen,et al.  A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. , 1993, The EMBO journal.

[7]  T. Baldwin,et al.  Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744 , 1990, Journal of bacteriology.

[8]  M. Chilton,et al.  Fingerprints of Agrobacterium Ti plasmids. , 1978, Plasmid.

[9]  G. Hayman,et al.  Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Don B. Clewell,et al.  Bacterial sex pheromone-induced plasmid transfer , 1993, Cell.

[11]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[12]  S. Farrand,et al.  The oriT region of the Agrobacterium tumefaciens Ti plasmid pTiC58 shares DNA sequence identity with the transfer origins of RSF1010 and RK2/RP4 and with T-region borders , 1992, Journal of bacteriology.

[13]  S. C. Winans,et al.  The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite , 1992, Cell.

[14]  B. Matthews,et al.  The helix-turn-helix DNA binding motif. , 1989, The Journal of biological chemistry.

[15]  Stephen K. Farrand,et al.  Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction , 1993, Nature.

[16]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[17]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[18]  M. Casadaban,et al.  Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. , 1976, Journal of molecular biology.

[19]  M. Van Montagu,et al.  Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5 of Agrobacterium tumefaciens. , 1981, Plasmid.

[20]  P. Zambryski Chronicles from the Agrobacterium-plant cell DNA transfer story , 1992 .

[21]  L. Rothfield,et al.  A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. , 1991, The EMBO journal.

[22]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[23]  J. Shine,et al.  Determinant of cistron specificity in bacterial ribosomes , 1975, Nature.

[24]  D. Verma Molecular Signals in Plant-Microbe Communications , 1991 .

[25]  B. Wilkins,et al.  Processing of plasmid DNA during bacterial conjugation. , 1984, Microbiological reviews.

[26]  T. Baldwin,et al.  Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. , 1992, The Journal of biological chemistry.

[27]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[28]  M. Van Montagu,et al.  The functional organization of the octopine Agrobacterium tumefaciens plasmid pTiB6s3. , 1981, Plasmid.

[29]  E. Nester,et al.  Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. , 1982, Plasmid.

[30]  A. Grossman,et al.  Extracellular control of spore formation in Bacillus subtilis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Salmond,et al.  A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a LuxR:Luxl superfamily in enteric bacteria , 1993, Molecular microbiology.

[32]  G. Salmond,et al.  A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. , 1992, Gene.

[33]  W. Lotz,et al.  Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. , 1989, Gene.

[34]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[35]  G. Pazour,et al.  Efficient transformation of Agrobacterium tumefaciens by electroporation. , 1990, Gene.

[36]  S. Ulitzur,et al.  GroESL proteins facilitate binding of externally added inducer by LuxR protein-containing E. coli cells. , 1993, Journal of bioluminescence and chemiluminescence.

[37]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. C. Winans,et al.  Transcription of the octopine catabolism operon of the Agrobacterium tumor-inducing plasmid pTiA6 is activated by a LysR-type regulatory protein. , 1991, Molecular plant-microbe interactions : MPMI.

[39]  S. Horinouchi,et al.  Autoregulatory factors and communication in actinomycetes. , 1992, Annual review of microbiology.

[40]  J. Mekalanos,et al.  A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR , 1988, Journal of bacteriology.

[41]  G. Cornelis,et al.  A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. , 1991, Gene.

[42]  S. C. Winans,et al.  Controlled expression of the transcriptional activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac promoter , 1991, Journal of bacteriology.

[43]  S. C. Winans,et al.  The Agrobacterium Tumefaciens Transcriptional Activator OccR Causes a Bend at a Target Promoter that is Partially Relaxed by a Plant Tumor Metabolite , 1993 .

[44]  A. Eberhard Inhibition and Activation of Bacterial Luciferase Synthesis , 1972, Journal of bacteriology.

[45]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[46]  D. Inzé,et al.  The functional organization of the nopaline A. tumefaciens plasmid pTiC58. , 1980, Plasmid.

[47]  E. Greenberg,et al.  Critical regions of the Vibrio fischeri luxR protein defined by mutational analysis , 1990, Journal of bacteriology.

[48]  P. Zambryski,et al.  virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens , 1986, Cell.

[49]  M. Montagu,et al.  Ti plasmids of Agrobacterium as conjugative plasmids , 1977, Nature.

[50]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[51]  S. C. Winans An Agrobacterium two‐component regulatory system for the detection of chemicals released from plant wounds , 1991, Molecular microbiology.

[52]  R. Schilperoort,et al.  Coordinated regulation of octopine degradation and conjugative transfer of Ti plasmids in Agrobacterium tumefaciens: evidence for a common regulatory gene and separate operons , 1978, Journal of bacteriology.

[53]  S. Tabata,et al.  Sequence determination and characterization of the replicator region in the tumor-inducing plasmid pTiB6S3 , 1989, Journal of bacteriology.

[54]  H. Krisch,et al.  Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. , 1987, Gene.

[55]  J. Smith,et al.  lacZY gene fusion cassettes with KanR resistance. , 1988, Nucleic acids research.

[56]  E. Signer,et al.  Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. , 1990, Genes & development.

[57]  S. C. Winans,et al.  Altered-function mutations of the transcriptional regulatory gene virG of Agrobacterium tumefaciens , 1992, Journal of bacteriology.

[58]  E. Greenberg,et al.  Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ , 1992, Journal of bacteriology.

[59]  B. Staskawicz,et al.  Prokaryotic plant parasites , 1993, Cell.

[60]  A. Kerr,et al.  A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens , 1991, Journal of bacteriology.

[61]  M. Silverman,et al.  Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. , 1987, Nucleic acids research.

[62]  M. Montagu,et al.  Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids , 1978, Nature.

[63]  D. le Coq,et al.  Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria , 1985, Journal of bacteriology.

[64]  M. Montagu,et al.  Thermosensitive step associated with transfer of the Ti plasmid during conjugation: Possible relation to transformation in crown gall. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Farrand,et al.  Characterization of conjugal transfer functions of Agrobacterium tumefaciens Ti plasmid pTiC58 , 1989, Journal of bacteriology.

[66]  D. Kaiser,et al.  How and why bacteria talk to each other , 1993, Cell.

[67]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[68]  B. A. Castilho,et al.  Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons , 1984, Journal of bacteriology.

[69]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.