Nanoporous Metals Based on Metallic Glasses: Synthesis, Structure and Functional Applications

[1]  Zhaoping Lu,et al.  Boosting Oxygen‐Evolving Activity via Atom‐Stepped Interfaces Architected with Kinetic Frustration , 2022, Advanced materials.

[2]  Shuangshuang Jiang,et al.  Self-supported hierarchical porous FeNiCo-based amorphous alloys as high-efficiency bifunctional electrocatalysts toward overall water splitting , 2021, International Journal of Hydrogen Energy.

[3]  Lai‐Chang Zhang,et al.  A Self‐Supported High‐Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions , 2021, Advanced Functional Materials.

[4]  Lai‐Chang Zhang,et al.  Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses , 2021 .

[5]  Zhifeng Wang,et al.  3D nanoporous Ni@NiO/metallic glass sandwich electrodes without corrosion cracks for flexible supercapacitor application , 2021 .

[6]  Tao Zhang,et al.  Nanoporous metallic-glass electrocatalysts for highly efficient oxygen evolution reaction , 2021 .

[7]  Z. Cui,et al.  Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects , 2020 .

[8]  Ye Pan,et al.  In-situ electrochemical oxidation of amorphous nanoporous NiZrO for enhanced non-enzymatic glucose sensing , 2020 .

[9]  J. Zou,et al.  Nanoporous NiFeMoP alloy as a bifunctional catalyst for overall water splitting , 2020, International Journal of Hydrogen Energy.

[10]  Xiaomin Zhang,et al.  Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors , 2020 .

[11]  Z. Cui,et al.  Highly efficient amorphous np-PdFePC catalyst for hydrogen evolution reaction , 2019 .

[12]  X. J. Liu,et al.  Self-supported NiCoP/nanoporous copper as highly active electrodes for hydrogen evolution reaction , 2019 .

[13]  Yuan Wu,et al.  Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation , 2019, Advanced materials.

[14]  Tao Zhang,et al.  Formation of ultrafine spongy nanoporous metals (Ni, Cu, Pd, Ag and Au) by dealloying metallic glasses in acids with capping effect , 2019, Corrosion Science.

[15]  Qinghua Zhang,et al.  Nanoporous Palladium–Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction , 2019, ACS Energy Letters.

[16]  Yuan Wu,et al.  Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing , 2019, Electrochimica Acta.

[17]  A. Inoue,et al.  Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors , 2019, Electrochimica Acta.

[18]  Jiayan Wang,et al.  Hierarchical Cu2S NRs@CoS core-shell structure and its derivative towards synergistic electrocatalytic water splitting , 2019, Electrochimica Acta.

[19]  W. Xu,et al.  Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses , 2019, Journal of Alloys and Compounds.

[20]  F. Celegato,et al.  Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance , 2018, Chemical Physics Letters.

[21]  Haifeng Zhang,et al.  Fabrication and Photocatalytic Activity of Cu2O Nanobelts on Nanoporous Cu Substrate , 2018, Acta Metallurgica Sinica (English Letters).

[22]  Yanpeng Xue,et al.  Nanoporous gold thin films synthesised via de-alloying of Au-based nanoglass for highly active SERS substrates , 2018, Philosophical Magazine.

[23]  Hui Wang,et al.  High-performance hybrid electrode decorated by well-aligned nanograss arrays for glucose sensing. , 2018, Biosensors & bioelectronics.

[24]  Steven D. Lacey,et al.  Carbothermal shock synthesis of high-entropy-alloy nanoparticles , 2018, Science.

[25]  Tao Zhang,et al.  Homogeneous Nanoporous Ni Particles Produced by Dealloying Mg-Based Metallic Glass as Efficient Hydrogen Evolution Electrocatalyst , 2018 .

[26]  Mingwei Chen,et al.  Nanoporous metal by dealloying for electrochemical energy conversion and storage , 2018 .

[27]  J. Weissmüller,et al.  Dealloyed nanoporous materials with interface-controlled behavior , 2018 .

[28]  Yanpeng Xue,et al.  High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass , 2017 .

[29]  Jaephil Cho,et al.  Precious Metal-free Approach to Hydrogen Electrocatalysis for Energy Conversion: from Mechanism Understanding to Catalyst Design , 2017 .

[30]  Yanpeng Xue,et al.  Improving the chemical de-alloying of amorphous Au alloys , 2017 .

[31]  X. J. Liu,et al.  Synthesis of well-aligned CuO nanowire array integrated with nanoporous CuO network for oxidative degradation of methylene blue , 2017 .

[32]  Lin Liu,et al.  Enhanced electro-catalytic performance of Pd-based amorphous nanoporous structure synthesized by dealloying Pd32Ni48P20 metallic glass , 2017 .

[33]  Wei Zhang,et al.  Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy , 2017 .

[34]  A. Hirata,et al.  Tunable Nanoporous Metallic Glasses Fabricated by Selective Phase Dissolution and Passivation for Ultrafast Hydrogen Uptake , 2017 .

[35]  Run‐Wei Li,et al.  Nanoporous metal/metal-oxide composite prepared by one-step de-alloying AlNiCoYCu metallic glasses , 2017 .

[36]  Tao Zhang,et al.  Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass , 2017 .

[37]  A. Eftekhari Electrocatalysts for hydrogen evolution reaction , 2017 .

[38]  S. Choudhury,et al.  Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes , 2017 .

[39]  Tao Zhang,et al.  Correlation between dealloying conditions and coarsening behaviors of nanoporous silver produced by chemical dealloying of Ca-Ag metallic glass , 2017 .

[40]  Z. Ren,et al.  Three-Dimensional Nanoporous Iron Nitride Film as an Efficient Electrocatalyst for Water Oxidation , 2017 .

[41]  W. S. Teo,et al.  Recent Progress in Energy‐Driven Water Splitting , 2017, Advanced science.

[42]  Yanpeng Xue,et al.  Excellent surface enhanced Raman scattering obtained with nanoporous gold fabricated by chemical de-alloying , 2016 .

[43]  F. Celegato,et al.  The mechanism of generating nanoporous Au by de-alloying amorphous alloys , 2016 .

[44]  Lei Zhang,et al.  Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. , 2016, Nano letters.

[45]  Yuan Wu,et al.  Bendable nanoporous copper thin films with tunable thickness and pore features , 2016 .

[46]  X. J. Liu,et al.  Formation mechanism and characterization of nanoporous silver with tunable porosity and promising capacitive performance by chemical dealloying of glassy precursor , 2016 .

[47]  Yuan Wu,et al.  Development of electrochemical supercapacitors with uniform nanoporous silver network , 2015 .

[48]  S. Bordiga,et al.  Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering , 2015 .

[49]  A. Inoue,et al.  Multicomponent nanoporous metals prepared by dealloying Pd80−xNixP20 metallic glasses , 2015 .

[50]  H. Xu,et al.  Using corrosion to fabricate various nanoporous metal structures , 2015 .

[51]  T. Fujita,et al.  High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. , 2015, Angewandte Chemie.

[52]  C. Zhang,et al.  Chemically dealloyed MgCuGd metallic glass with enhanced catalytic activity in degradation of phenol , 2014 .

[53]  Rui Li,et al.  Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering , 2014 .

[54]  Jianqing Jiang,et al.  Pd-based nanoporous metals for enzyme-free electrochemical glucose sensors , 2014 .

[55]  D. Su,et al.  The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects. , 2014, Chemical communications.

[56]  A. Makino,et al.  Nanoporous palladium fabricated from an amorphous Pd42.5Cu30Ni7.5P20 precursor and its ethanol electro-oxidation performance , 2013 .

[57]  A. Hirata,et al.  High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors , 2013 .

[58]  I. Muto,et al.  Effects of the initial microstructure of Ti–Cu alloys on final nanoporous copper via dealloying , 2013 .

[59]  A. Makino,et al.  Nickel-stabilized nanoporous copper fabricated from ternary TiCuNi amorphous alloys , 2013 .

[60]  Luyang Chen,et al.  Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors , 2013 .

[61]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[62]  R. Devan,et al.  Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[63]  R. Zengerle,et al.  Strategies for the Fabrication of Porous Platinum Electrodes , 2011, Advanced materials.

[64]  Yang Jiao,et al.  Patterned nanoporous gold as an effective SERS template , 2011, Nanotechnology.

[65]  Xiaoping Song,et al.  Nanoporous Ag prepared from the melt-spun Cu-Ag alloys , 2011 .

[66]  A. Inoue,et al.  A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. , 2011, Chemical communications.

[67]  J. Scully,et al.  Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel , 2011 .

[68]  Hongtao Yuan,et al.  Three-dimensional nanoporous gold for electrochemical supercapacitors , 2011 .

[69]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[70]  J. Erlebacher,et al.  Structure/processing relationships in the fabrication of nanoporous gold , 2010 .

[71]  A. Inoue,et al.  Novel Nanoporous Au-Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability , 2010 .

[72]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[73]  Zhonghua Zhang,et al.  Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys , 2009 .

[74]  Mingwei Chen,et al.  Nanoporous Metals for Catalytic and Optical Applications , 2009 .

[75]  Xin Jian Li,et al.  SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array , 2009, Nanotechnology.

[76]  J. Erlebacher,et al.  Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold , 2009 .

[77]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[78]  Weimin Wang,et al.  Influence of Alloy Composition and Dealloying Solution on the Formation and Microstructure of Monolithic Nanoporous Silver through Chemical Dealloying of Al―Ag Alloys , 2009 .

[79]  Masataka Hakamada,et al.  Fabrication of nanoporous palladium by dealloying and its thermal coarsening , 2009 .

[80]  Zhonghua Zhang,et al.  Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying , 2009 .

[81]  Takeshi Fujita,et al.  Nanoporous Copper with Tunable Nanoporosity for SERS Applications , 2009 .

[82]  Zhonghua Zhang,et al.  Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al−Cu Alloys , 2009 .

[83]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[84]  A. Inoue,et al.  Nanoporous Metals by Dealloying Multicomponent Metallic Glasses , 2008 .

[85]  Mingwei Chen,et al.  Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation , 2007 .

[86]  Takeshi Fujita,et al.  Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements , 2007 .

[87]  A. Hamza,et al.  Monolithic nanoporous copper by dealloying Mn–Cu , 2006 .

[88]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[89]  S. T. Picraux,et al.  Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1−x , 2006 .

[90]  Jonah Erlebacher,et al.  Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material , 2004 .

[91]  C. Chien,et al.  Fabrication of Nanoporous Nickel by Electrochemical Dealloying , 2004 .

[92]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[93]  A. Arvia,et al.  Kinetics of Particle Coarsening at Gold Electrode/Electrolyte Solution Interfaces Followed by In Situ Scanning Tunneling Microscopy , 1996 .

[94]  K. Sieradzki,et al.  In Situ Scanning Tunneling Microscopy of Corrosion of Silver-Gold Alloys , 1991, Science.

[95]  Heather Lechtman,et al.  Pre-Columbian Surface Metallurgy , 1984 .

[96]  P. Swann,et al.  Electron Metallography of Chemical Attack Upon Some Alloys Susceptible to Stress Corrosion Cracking , 1963 .

[97]  Yue Wu,et al.  Flexible Bimetallic Nanoporous Cu-Ag Synthesized by Electrochemical Dealloying for Battery-Type Electrodes with High Electrochemical Performance , 2018 .

[98]  Tao Zhang,et al.  Fabrication of Three-Dimensional Nanoporous Nickel by Dealloying Mg-Ni-Y Metallic Glasses in Citric Acid Solutions for High-Performance Energy Storage , 2017 .

[99]  T. Yin,et al.  Fabrication of nanoporous bi-metallic Ag–Pd alloys with open pores , 2016 .

[100]  K. Sieradzki,et al.  Metallic corrosion. , 1994, Science.