Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function

[1]  M. Fornage,et al.  Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels , 2020, Circulation. Genomic and precision medicine.

[2]  Han Chen,et al.  A unified method for rare variant analysis of gene‐environment interactions , 2019, Statistics in medicine.

[3]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[4]  Han Chen,et al.  A unified method for rare variant analysis of gene-environment interactions , 2019, bioRxiv.

[5]  L. Wain,et al.  Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study , 2019, The Lancet. Respiratory medicine.

[6]  Han Chen,et al.  A powerful and data‐adaptive test for rare‐variant–based gene‐environment interaction analysis , 2018, Statistics in medicine.

[7]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[8]  Lauren S. Mogil,et al.  Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function , 2018, Nature Communications.

[9]  M. Fornage,et al.  Role of Rare and Low Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels , 2018, bioRxiv.

[10]  Sina A. Gharib,et al.  Meta-analysis of exome array data identifies six novel genetic loci for lung function , 2018, Wellcome open research.

[11]  Quek Xiu Cheng,et al.  Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data , 2017, Scientific Reports.

[12]  Roby Joehanes,et al.  Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies , 2017, Genome Biology.

[13]  Christian Gieger,et al.  Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets , 2017, Nature Genetics.

[14]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[15]  A. Remaley,et al.  Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue , 2016, Scientific Reports.

[16]  Emrah Kostem,et al.  Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models , 2016, PLoS genetics.

[17]  Blair H. Smith,et al.  Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12 , 2016, Thorax.

[18]  Lorna M. Lopez,et al.  Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation , 2015, Nature Communications.

[19]  N. Laird,et al.  A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry , 2015, BMC Genetics.

[20]  Mitchell J. Machiela,et al.  LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants , 2015, Bioinform..

[21]  L. Wain,et al.  Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank , 2015, The Lancet. Respiratory medicine.

[22]  Tom R. Gaunt,et al.  Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel , 2015, Nature Communications.

[23]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[24]  Debashis Ghosh,et al.  Correcting systematic inflation in genetic association tests that consider interaction effects: application to a genome-wide association study of posttraumatic stress disorder. , 2014, JAMA psychiatry.

[25]  Josée Dupuis,et al.  Incorporating Gene-Environment Interaction in Testing for Association with Rare Genetic Variants , 2014, Human Heredity.

[26]  Lorna M. Lopez,et al.  Genome-wide association analysis identifies six new loci associated with forced vital capacity , 2014, Nature Genetics.

[27]  Cen Wu,et al.  A novel method for identifying nonlinear gene–environment interactions in case–control association studies , 2013, Human Genetics.

[28]  Eric Boerwinkle,et al.  Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium , 2013, PloS one.

[29]  Margreet Kloppenburg,et al.  The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection , 2013, European Journal of Epidemiology.

[30]  J. Meigs,et al.  Sequence Kernel Association Test for Quantitative Traits in Family Samples , 2013, Genetic epidemiology.

[31]  Ian J Deary,et al.  Cohort profile: the Lothian Birth Cohorts of 1921 and 1936. , 2012, International journal of epidemiology.

[32]  Sina A. Gharib,et al.  Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function , 2012, PLoS genetics.

[33]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[34]  Patrick F. Sullivan,et al.  zCall: a rare variant caller for array-based genotyping: Genetics and population analysis , 2012, Bioinform..

[35]  Yun-Xin Fu,et al.  Incorporating predicted functions of nonsynonymous variants into gene-based analysis of exome sequencing data: a comparative study , 2011, BMC proceedings.

[36]  Christian Gieger,et al.  Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function , 2011, Nature Genetics.

[37]  E. Boerwinkle,et al.  dbNSFP: A Lightweight Database of Human Nonsynonymous SNPs and Their Functional Predictions , 2011, Human mutation.

[38]  S. Kritchevsky,et al.  Lung function and risk for heart failure among older adults: the Health ABC Study. , 2011, The American journal of medicine.

[39]  W. Rathmann,et al.  Cohort profile: the study of health in Pomerania. , 2011, International journal of epidemiology.

[40]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[41]  P. Burney,et al.  Forced vital capacity, airway obstruction and survival in a general population sample from the USA , 2010, Thorax.

[42]  Inês Barroso,et al.  Genome-wide association study identifies five loci associated with lung function , 2010, Nature Genetics.

[43]  Scott T. Weiss,et al.  A Genome-Wide Association Study of Pulmonary Function Measures in the Framingham Heart Study , 2009, PLoS genetics.

[44]  K. Lunetta,et al.  Methods in Genetics and Clinical Interpretation Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Design of Prospective Meta-Analyses of Genome-Wide Association Studies From 5 Cohorts , 2010 .

[45]  A. Hofman,et al.  The Rotterdam Study: objectives and design update , 2007, European Journal of Epidemiology.

[46]  R. Hopkins,et al.  Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes , 2007, European Respiratory Journal.

[47]  Qiong Yang,et al.  The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. , 2007, American journal of epidemiology.

[48]  Peter Kraft,et al.  Exploiting Gene-Environment Interaction to Detect Genetic Associations , 2007, Human Heredity.

[49]  C. Power,et al.  Cohort profile: 1958 British birth cohort (National Child Development Study). , 2006, International journal of epidemiology.

[50]  N. Day,et al.  Respiratory function and self-reported functional health: EPIC-Norfolk population study , 2005, European Respiratory Journal.

[51]  R Holle,et al.  KORA - A Research Platform for Population Based Health Research , 2005, Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)).

[52]  D. Mannino,et al.  Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study , 2003, Thorax.

[53]  R. Kronmal,et al.  Multi-Ethnic Study of Atherosclerosis: objectives and design. , 2002, American journal of epidemiology.

[54]  W Winkelstein,et al.  Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. , 2000, Chest.

[55]  R. Kronmal,et al.  The Cardiovascular Health Study: design and rationale. , 1991, Annals of epidemiology.

[56]  A. Folsom,et al.  The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. , 1989, American journal of epidemiology.

[57]  N E Day,et al.  The design of case-control studies: the influence of confounding and interaction effects. , 1984, International journal of epidemiology.

[58]  W. Kannel,et al.  The Framingham Offspring Study. Design and preliminary data. , 1975, Preventive medicine.

[59]  E. Suchman,et al.  The American Soldier: Adjustment During Army Life. , 1949 .

[60]  A. Hofman,et al.  Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function , 2010, Nature Genetics.

[61]  P. Allhoff,et al.  The Framingham Offspring Study , 1991 .

[62]  P. Rantakallio,et al.  The longitudinal study of the northern Finland birth cohort of 1966. , 1988, Paediatric and perinatal epidemiology.

[63]  E. Suchman,et al.  The American soldier: Adjustment during army life. (Studies in social psychology in World War II), Vol. 1 , 1949 .