Experimental Investigations on Superconducting Niobium Cavities at Highest Radiofrequency Fields

In order to increase the maximum accelerating gradient in superconducting niobium cavities, electrolytic polishing was applied to 1.3 GHz single cell and nine-cell cavities. A facility for the electropolishing was set up in collaboration with CERN. Tests on single-cell cavities have shown that electropolishing increases the maximum accelerating gradient significantly as compared to the standard etching treatment. Preliminary results on high temperature heat treatments of electropolished cavities are shown. Electropolishing of nine-cell cavities was carried out in collaboration with KEK. One nine-cell cavity improved the accelerating gradient from 22 MV/m after standard etch to 32 MV/m after electropolishing. A low temperature ’in-situ’ bakeout at 120◦C for 48 hours was found to be necessary to reduce the degradation of the quality factor at accelerating fields above 25 MV/m. The detailed nature of this process is yet to be understood. Some models were investigated to describe this behaviour.

[1]  J. Waldram,et al.  SURFACE IMPEDANCE OF SUPERCONDUCTORS , 1964 .

[2]  M. Koblischka Analysis of flux distributions of superconductors in the presence of structural defects , 1996 .

[3]  H. Ullmaier,et al.  MAGNETIC BEHAVIOR OF TYPE-II SUPERCONDUCTORS WITH SMALL GINZBURG--LANDAU PARAMETERS. , 1973 .

[4]  M. Silari,et al.  Radiation Produced by the LEP Superconducting RF Cavities , 1999 .

[5]  B. Visentin,et al.  CAVITY BAKING : A CURE FOR THE HIGH ACCELERATOR FIELD Q0 DROP , 1999 .

[6]  E. al.,et al.  Superconducting TESLA cavities , 2000, physics/0003011.

[7]  T. Matsushita On the Surface Barrier in Type II Superconductors , 1983 .

[8]  E. Garwin,et al.  Oxide overlayers and the superconducting rf properties of yttrium-processed high purity Nb , 1990 .

[9]  K. Schulze Preparation and Characterization of Ultra-High-Purity Niobium , 1981 .

[10]  C. Benvenuti,et al.  Superconducting niobium cavities, a case for the film technology , 2001 .

[11]  Beasley,et al.  Nonlinear microwave properties of superconducting Nb microstrip resonators. , 1995, Physical review. B, Condensed matter.

[12]  G. J. Dick,et al.  Critical rf magnetic fields for some type-I and type-II superconductors , 1977 .

[13]  N. S. Barnett,et al.  Private communication , 1969 .

[14]  T. Powers,et al.  Performance experience with the CEBAF SRF cavities , 1995, Proceedings Particle Accelerator Conference.

[15]  H. Löhneysen,et al.  Oxygen-induced surface structure of Nb(1 1 0) , 2001 .

[16]  J. Halbritter,et al.  XPS and AES studies on oxide growth and oxide coatings on niobium , 1980 .

[17]  H. Safa,et al.  Power dissipation at high fields in granular RF superconductivity , 1991 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  F. Koechlin,et al.  Flux trapping in superconducting cavities , 2022 .

[20]  K. Saito,et al.  Temperature Dependence of the Surface Resistance of Niobium at 1300 MHz - Comparison to BCS Theory - , 1999 .

[21]  W. F. Peck,et al.  Electrical and magnetic properties of Nb2O5-δ crystallographic shear structures , 1991 .

[22]  H. Padamsee,et al.  Measuring the RF Critical Field of Pb , Nb , and Nb 3 Sn ∗ , 1998 .

[23]  D. Proch,et al.  An advanced rotating T-R mapping and its diagnoses of TESLA 9-cell superconducting cavity , 1995, Proceedings Particle Accelerator Conference.

[24]  H. Padamsee,et al.  RF superconductivity for accelerators , 1998 .

[25]  H. Preis,et al.  Electropolishing and in-situ Baking of 1.3 GHz Niobium Cavities , 1999 .

[26]  A. Laisné,et al.  Effet d'avalanche en geometrie plane et cylindrique , 1968 .

[27]  K. Mittag Kapitza conductance and thermal conductivity of copper niobium and aluminium in the range from 1.3 to 2.1 K , 1973 .

[28]  M. Strongin,et al.  Inductive transition of niobium and tantalum in the 10-MHz range. I. Zero- field superconducting penetration depth , 1974 .

[29]  P. Kneisel,et al.  Preliminary Experience with ''In-Site'' Baking of Niobium Cavities , 2000 .

[30]  J. Knobloch,et al.  IMPROVEMENT OF CAVITY PERFORMANCE IN THE SACLAY/CORNELL/DESY’S SC CAVITIES , 1999 .

[31]  M. Iwami,et al.  Single NbO nano-crystal formation on low temperature annealed Nb(001) surface , 2001 .

[32]  C. K. Jones,et al.  Superconductivity in the TiO and NbO systems , 1972 .

[33]  H. Shtrikman,et al.  Scanning Hall probe microscope images of field penetration into niobium films , 2000 .

[34]  C. Koch,et al.  Effects of interstitial oxygen on the superconductivity of niobium , 1974 .

[35]  O. Hellwig,et al.  Oxidation of /Nb(110) thin films on a-plane sapphire substrates: an X-ray study , 2000 .

[36]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[37]  Physical Review , 1965, Nature.

[38]  Weber,et al.  Anisotropy effects in superconducting niobium. , 1991, Physical review. B, Condensed matter.

[39]  Matthias Liepe,et al.  High-Field Slope in Superconducting Cavities Due to Magnetic Field Enhancement at Grain Boundaries , 1999 .

[40]  M. A. Biondi,et al.  Millimeter Wave Absorption in Superconducting Aluminum. I. Temperature Dependence of the Energy Gap , 1959 .

[41]  Kenji Saito,et al.  SUPERIORITY OF ELECTROPOLISHING OVER CHEMICAL POLISHING ON HIGH GRADIENTS , 1998 .

[42]  C. Antoine,et al.  Alternative approaches for surface treatment of Nb superconducting cavities , 1999 .

[43]  José Salgado,et al.  Nuclear Instruments and Methods , 2003 .

[44]  R. Lathe Phd by thesis , 1988, Nature.

[45]  Physics Letters , 1962, Nature.

[46]  H. Padamsee,et al.  MIRCO-STRUCTURES OF RF SURFACES IN THE ELECTRON-BEAM-WELD REGIONS OF NIOBIUM , 1999 .

[47]  J. Matricon,et al.  Superheating fields in superconductors , 1967 .

[48]  M. Strongin,et al.  Inductive transition of niobium and tantalum in the 10-MHz range. II. The peak in the inductive skin depth for T just less than T c , 1975 .

[49]  Ernst Helmut Brandt,et al.  The flux-line lattice in superconductors , 1995, supr-con/9506003.

[50]  A. Joseph,et al.  Experimental Evidence for Delayed Entry of Flux Into a Type-II Superconductor , 1964 .