A review of the 19th International Symposium on geodynamics and earth tide, Wuhan 2021

[1]  T. Jahr,et al.  The Superconducting Gravimeter CD-034 at Moxa Observatory: More than 20 Years of Scientific Experience and a Reanimation , 2022, Pure and Applied Geophysics.

[2]  S. Rosat,et al.  Delineation of Aquifer Boundary by Two Vertical Superconducting Gravimeters in a Karst Hydrosystem, France , 2022, Pure and Applied Geophysics.

[3]  Yoshiyuki Tanaka,et al.  A combination of tides and nontidal variations in ocean bottom pressure may generate interannual slip fluctuations in the transition zone along a subduction plate interface , 2022, Geodesy and Geodynamics.

[4]  B. Ducarme About the influence of pressure waves in tidal gravity records , 2022, Geodesy and Geodynamics.

[5]  A. Аbetov,et al.  Geodynamic hazards and risk assessment at the Karachaganak oil, gas, and condensate field , 2022, Geodesy and Geodynamics.

[6]  Xiaoming Cui,et al.  Progress of Research on the Earth’s Gravity Tides and its Application in Geodynamics in China , 2022, Pure and Applied Geophysics.

[7]  He-ping Sun,et al.  A review of tidal triggering of global earthquakes , 2022, Geodesy and Geodynamics.

[8]  S. Rosat,et al.  A First Reliable Gravity Tidal Model for Lake Nasser Region (Egypt) , 2022, Pure and Applied Geophysics.

[9]  Zhaohui Chen,et al.  Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China , 2022, Pure and Applied Geophysics.

[10]  E. Pan,et al.  Temperature Variation in a Homogeneous Sphere Induced by the Tide-Generating Force , 2022, Pure and Applied Geophysics.

[11]  A. Canitano,et al.  Source Modeling of the 2009 Fengpin–Hualien Earthquake Sequence, Taiwan, Inferred From Static Strain Measurements , 2022, Pure and Applied Geophysics.

[12]  J. Barriot,et al.  Combination of Tsoft and ET34-ANA-V80 software for the preprocessing and analysis of tide gauge data in French Polynesia , 2022, Geodesy and Geodynamics.

[13]  Libo Liu,et al.  Ionospheric precursors of strong earthquakes observed using six GNSS stations data during continuous five years (2011–2015) , 2022, Geodesy and Geodynamics.

[14]  Jianqiao Xu,et al.  Quantitative separation of the local vadose zone water storage changes using the superconductive gravity technique , 2022, Journal of Hydrology.

[15]  W. Shen,et al.  Analysis of iGrav Superconducting Gravity Measurements in Kunming, China, with Emphasis on Calibration, Tides, and Hydrology , 2022, Pure and Applied Geophysics.

[16]  Changsong Li,et al.  Analysis of coordinate time series of DORIS stations on Eurasian plate and the plate motion based on SSA and FFT , 2022, Geodesy and Geodynamics.

[17]  Guoqing Zhang,et al.  Crustal Deformations in the Northeastern Tibetan Plateau Revealed by Multiple Geodetic Datasets , 2022, Pure and Applied Geophysics.

[18]  He Tang,et al.  Comparison of GRACE and GNSS Seasonal Load Displacements Considering Regional Averages and Discrete Points , 2021, Journal of Geophysical Research: Solid Earth.

[19]  R. Klees,et al.  Analysis and Mitigation of Biases in Greenland Ice Sheet Mass Balance Trend Estimates From GRACE Mascon Products , 2021, Journal of Geophysical Research: Solid Earth.

[20]  C. Braitenberg,et al.  Gravity as a tool to improve the hydrologic mass budget in karstic areas , 2021, Hydrology and Earth System Sciences.

[21]  Wenke Sun,et al.  Moho Interface Changes Beneath the Tibetan Plateau Based on GRACE Data , 2021, Journal of Geophysical Research: Solid Earth.

[22]  V. Pálinkás̆,et al.  Improved measurement model for FG5/X gravimeters , 2021 .

[23]  He Tang,et al.  Time-space characteristics of viscoelastic post-seismic deformations corresponding to different rheology models , 2021 .

[24]  M. Fang,et al.  On the Eigen‐Mode Excitation of Linear Oscillators and the Earth's Polar Motion , 2020, Annalen der Physik.

[25]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[26]  Guoqing Zhang,et al.  Gravity variations preceding the large earthquakes in the Qinghai-Tibet Plateau from 21st century , 2020 .

[27]  M. Bevis,et al.  A point dislocation in a layered, transversely isotropic and self-gravitating Earth — Part II: accurate Green's functions , 2019, Geophysical Journal International.

[28]  M. Bevis,et al.  A point dislocation in a layered, transversely isotropic and self-gravitating Earth. Part I: analytical dislocation Love numbers , 2019, Geophysical Journal International.

[29]  Frank Flechtner,et al.  Contributions of GRACE to understanding climate change , 2019, Nature Climate Change.

[30]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[31]  Guillaume Ramillien,et al.  Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space , 2013, Surveys in Geophysics.

[32]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[33]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[34]  J. Sündermann,et al.  Broad frequency tidal dynamics simulated by a high-resolution global ocean tide model forced by ephemerides , 2008 .

[35]  Paul Vauterin,et al.  Tsoft: graphical and interactive software for the analysis of time series and Earth tides , 2005, Comput. Geosci..

[36]  Rongjiang Wang,et al.  The dislocation theory: a consistent way for including the gravity effect in (visco)elastic plane-earth models , 2005 .

[37]  Sachiko Tanaka,et al.  Earth Tides Can Trigger Shallow Thrust Fault Earthquakes , 2004, Science.

[38]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[39]  J. Wahr,et al.  Tides for a convective Earth , 1999 .

[40]  H.-G. Wenzel,et al.  The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .