Secure Computer Network: Strategies and Challengers in Big Data Era

As computer networks have transformed in essential tools, their security has become a crucial problem for computer systems. Detecting unusual values fromlarge volumes of information produced by network traffic has acquired huge interest in the network security area. Anomaly detection is a starting point toprevent attacks, therefore it is important for all computer systems in a network have a system of detecting anomalous events in a time near their occurrence. Detecting these events can lead network administrators to identify system failures, take preventive actions and avoid a massive damage.This work presents, first, how identify network traffic anomalies through applying parallel computing techniques and Graphical Processing Units in two algorithms, one of them a supervised classification algorithm and the other based in traffic image processing.Finally, it is proposed as a challenge to resolve the anomalies detection using an unsupervised algorithm as Deep Learning.

[1]  Darril Gibson CompTIA Security+: Get Certified Get Ahead: SY0-201 Study Guide , 2009 .

[2]  Consuelo Goytortúa Coyoli Analytics: el uso de big data en el mundo real , 2014 .

[3]  Gerhard Wellein,et al.  Introduction to High Performance Computing for Scientists and Engineers , 2010, Chapman and Hall / CRC computational science series.

[4]  Chung-Horng Lung,et al.  Mobile Network Traffic Prediction Using MLP, MLPWD, and SVM , 2016, 2016 IEEE International Congress on Big Data (BigData Congress).

[5]  Seref Sagiroglu,et al.  Big data analytics for network anomaly detection from netflow data , 2017, 2017 International Conference on Computer Science and Engineering (UBMK).

[6]  Shuaiwen Song,et al.  MIC-SVM: Designing a Highly Efficient Support Vector Machine for Advanced Modern Multi-core and Many-Core Architectures , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[7]  María Fabiana Piccoli,et al.  Un enfoque para la detección de anomalías en el tráfico de red usando imágenes y técnicas de computación de alto desempeño , 2016 .

[8]  Mercedes Barrionuevo,et al.  An Anomaly Detection Model in a LAN Using K-NN and High Performance Computing Techniques , 2017, CACIC.

[9]  Kuan-Ching Li,et al.  Pipelined Multi-GPU MapReduce for Big-Data Processing , 2013 .

[10]  Pheng-Ann Heng,et al.  A Fast and Flexible Sorting Algorithm with CUDA , 2009, ICA3PP.

[11]  Hind Tribak Análisis estadístico de distintas técnicas de inteligencia artificial en detección de intrusos , 2013 .

[12]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[13]  Navarun Gupta,et al.  Seven V's of Big Data understanding Big Data to extract value , 2014, Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education.

[14]  Silvia Mabel Castro,et al.  Herramientas de visualización para la exploración de datos , 2007 .

[15]  María Fabiana Piccoli,et al.  Cálculo en tiempo real de identificadores robustos para objetos multimedia mediante una arquitectura paralela CPU-GPU , 2016 .

[16]  Rupali Sunil Wagh,et al.  High Performance Computing and Big Data Analytics - Paradigms and Challenges , 2015 .

[17]  Sergio Herrero-Lopez,et al.  Accelerating SVMs by integrating GPUs into MapReduce clusters , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[18]  Luca Maria Gambardella,et al.  Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks , 2013, MICCAI.

[19]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[20]  Victor-Valeriu Patriciu,et al.  Neural network models in big data analytics and cyber security , 2017, 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI).

[21]  C. L. Philip Chen,et al.  Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..

[22]  Yun Wang,et al.  Statistical Techniques for Network Security: Modern Statistically-Based Intrusion Detection and Protection , 2008 .