High-speed high-precision CMOS analog rank order filter with O(n) complexity

A continuous-time implementation of a voltage-mode analog rank order filter is presented. The proposed circuit features high speed, high precision, and simple circuit implementation. The overall architecture exhibits linear increase of complexity with the number of inputs (O(n)), at the rate of seven transistors per input. Rank is easily programmable with the tail current for all rank order values from the Max to the Min case, and the programmed function is accurate for a wide range of tail currents. Moreover, unlike previously reported rank order structures the precision of the proposed circuit does not rely on perfect matching of all input transistors. Simulations as well as experimental results are presented that verify the functionality and performance of the proposed circuit.

[1]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[2]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[3]  G. Geelen,et al.  A fast-settling CMOS op amp for SC circuits with 90-dB DC gain , 1990 .

[4]  K. Urahama,et al.  Direct analog rank filtering , 1995 .

[5]  Yusuf Leblebici,et al.  A Modular and Scalable Architecture for the Realization of High-speed Programmable Rank Order Filters Using Threshold Logic , 2000, VLSI Design.

[6]  Jim S. Jimmy Li,et al.  Analog implementation of median filter for real-time signal processing , 1988 .

[7]  Peter R. Kinget,et al.  A programmable analog cellular neural network CMOS chip for high speed image processing , 1995, IEEE J. Solid State Circuits.

[8]  Ugur Cilingiroglu,et al.  Rank-order filter design with a sampled-analog multiple-winners-take-all core , 2002 .

[9]  Boon Poh Tan,et al.  Semiparallel rank order filtering in analog VLSI , 2001 .

[10]  Jaime Ramírez-Angulo,et al.  High-speed high-precision voltage-mode MIN/MAX circuits in CMOS technology , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[11]  I. E. Opris Rail-to-rail multiple-input min/max circuit , 1998 .

[12]  Ramón González Carvajal,et al.  New compact CMOS continuous-time low-Voltage analog rank-order filter architecture , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Alejandro Díaz-Sánchez,et al.  A fully parallel CMOS analog median filter , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[14]  Dana S. Richards,et al.  VLSI median filters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[15]  Alejandro Díaz-Sánchez,et al.  A fully parallel CMOS analog median filter , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Jacek Kowalski 0.8 μm CMOS implementation of weighted-order statistic image filter based on cellular neural network architecture , 2003, IEEE Trans. Neural Networks.

[17]  Stephen P. DeWeerth,et al.  Rank-order filtering in analog VLSI , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[18]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[19]  K. Huper,et al.  An analog circuit for eigenvalue calculation and rank filtering , 1994 .

[20]  I. E. Opris,et al.  Analog rank extractors , 1997 .

[21]  A. Venetsanopoulos,et al.  Order statistics in digital image processing , 1992, Proc. IEEE.

[22]  Alejandro Díaz-Sánchez,et al.  Compact continuous-time analog rank-order filter implementation in CMOS technology , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[23]  R. Carvajal,et al.  Output stage for low supply voltage, high-performance CMOS current mirrors , 2002 .