Modeling efficiency and robustness in ruminants: the nutritional point of view.
暂无分享,去创建一个
[1] H. H. Laar,et al. Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: a meta-analysis. , 2016, Animal : an international journal of animal bioscience.
[2] O. Martin,et al. Robustesse, rusticité, flexibilité, plasticité... les nouveaux critères de qualité des animaux et des systèmes d'élevage: définitions systémique et biologique des différents concepts , 2010 .
[3] J. H. M. Thornley,et al. The lactation curve in cattle: a mathematical model of the mammary gland , 1983, The Journal of Agricultural Science.
[4] J. Wilkinson. Re-defining efficiency of feed use by livestock. , 2011, Animal : an international journal of animal bioscience.
[5] W. Cannon. The Wisdom of the Body , 1932 .
[6] S. Sørensen,et al. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows. , 2018, Journal of dairy science.
[7] Jan Dijkstra,et al. Mathematical modelling and integration of rumen fermentation processes , 1993 .
[8] J. Philipsson,et al. Breeding for robustness in cattle. , 2009 .
[9] K. Weigel,et al. Use of genotype × environment interaction model to accommodate genetic heterogeneity for residual feed intake, dry matter intake, net energy in milk, and metabolic body weight in dairy cattle. , 2017, Journal of dairy science.
[10] D. Sauvant,et al. Ingestive behaviour of grazing ruminants: meta-analysis of the components of bite mass , 2019, Animal Feed Science and Technology.
[11] T. Mary-Huard,et al. Characterizing individual differences in animal responses to a nutritional challenge: Toward improved robustness measures. , 2016, Journal of dairy science.
[12] D. Sauvant,et al. Modelling homeostatic and homeorhetic regulations in lactating animals , 1994 .
[13] Rafael Muñoz-Tamayo,et al. Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota , 2016 .
[14] D E Bauman,et al. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. , 1980, Journal of dairy science.
[15] M. Tichit,et al. An individual-based model simulating goat response variability and long-term herd performance. , 2010, Animal : an international journal of animal bioscience.
[16] A. Offner,et al. Comparative evaluation of the Molly, CNCPS, and LES rumen models , 2004 .
[17] D. Sauvant,et al. Dynamic model of the lactating dairy cow metabolism. , 2007, Animal : an international journal of animal bioscience.
[18] T. Clutton‐Brock,et al. Selection for foraging efficiency during a population crash in Soay sheep , 1995 .
[19] R. L. Baldwin,et al. Modeling ruminant digestion and metabolism. , 1999, Advances in experimental medicine and biology.
[20] Roel F. Veerkamp,et al. Genetic concepts to improve robustness of dairy cows , 2007 .
[21] P. Faverdin,et al. GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 2. Prediction of intake under rotational and continuously stocked grazing management , 2011 .
[22] M. Eugène,et al. INRA feeding system for ruminants , 2018 .
[23] N. C. Friggens,et al. Des animaux plus robustes: un enjeu majeur pour le développement durable des productions animales nécessitant l'essor du phénotypage fin et à haut débit , 2014 .
[24] D Sauvant,et al. Modeling of off-feed periods caused by subacute acidosis in intensive lactating ruminants: application to goats. , 2009, Journal of dairy science.
[25] P. Faverdin,et al. Identification of biological traits associated with differences in residual energy intake among lactating Holstein cows. , 2018, Journal of dairy science.
[26] P. Faverdin,et al. Actualisation des besoins protéiques des ruminants et détermination des réponses des femelles laitières aux apports de protéines digestibles dans l’intestin , 2015 .
[27] D. Sauvant,et al. Approche quantitative de l'acidose chez les ruminants , 2015 .
[28] D. Sauvant,et al. Development of a mechanistic model of intake, chewing and digestion in cattle in connection with updated feed units , 2014 .
[29] D. Sauvant,et al. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions , 2003 .
[30] Modeling homeorhetic trajectories of milk component yields, body composition and dry-matter intake in dairy cows: Influence of parity, milk production potential and breed. , 2017, Animal : an international journal of animal bioscience.
[31] D. Sauvant,et al. Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems. , 2016, Animal : an international journal of animal bioscience.
[32] D. Sauvant,et al. Development of a mechanistic model for rumen digestion validated using the duodenal flux of amino acids. , 1995, Reproduction, nutrition, development.
[33] H. Makkar,et al. Optimization of feed use efficiency in ruminant production systems. FAO Symposium Proceedings, Bangkok, Thailand, 27 November 2012. , 2013 .
[34] François Bocquier,et al. Adaptive abilities of the females and sustainability of ruminant livestock systems. A review , 2006 .
[35] D. Sauvant,et al. Modèle intégratif du tube digestif intégrant les interactions digestives, les flux de nutriments d’intérêt et compatible avec les systèmes UF et PDI , 2012 .
[36] H. van Laar,et al. A method to estimate cow potential and subsequent responses to energy and protein supply according to stage of lactation. , 2017, Journal of dairy science.
[37] J. Dijkstra,et al. Update of the Dutch protein evaluation system for ruminants: the DVE/OEB2010 system , 2010, The Journal of Agricultural Science.
[38] D. Sauvant,et al. Mechanistic model of intake of tropical pasture, depending on the growth and morphology of forage at a vegetative stage , 2014 .
[39] Juan J. Villalba,et al. Modelling Preference and Diet Selection Patterns by Grazing Ruminants: A Development in a Mechanistic Model of a Grazing Dairy Cow, MINDY , 2015 .
[40] D Sauvant,et al. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 2. Voluntary intake and energy partitioning. , 2010, Animal : an international journal of animal bioscience.