Deciding Positivity of Littlewood-Richardson Coefficients
暂无分享,去创建一个
[1] Ravindra K. Ahuja,et al. Network Flows: Theory, Algorithms, and Applications , 1993 .
[2] Ketan Mulmuley,et al. Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..
[3] Ketan Mulmuley,et al. On P vs. NP and geometric complexity theory: Dedicated to Sri Ramakrishna , 2011, JACM.
[4] A. Karimi,et al. Master‟s thesis , 2011 .
[5] U. Helmke,et al. Eigenvalue inequalities and Schubert calculus , 1995 .
[6] Andrei Zelevinsky,et al. Triple Multiplicities for sl(r + 1) and the Spectrum of the Exterior Algebra of the Adjoint Representation , 1992 .
[7] B. M. Fulk. MATH , 1992 .
[8] Christophe Tollu,et al. Stretched Littlewood-Richardson and Kostka Coefficients , 2004 .
[9] Greta Panova,et al. On the complexity of computing Kronecker coefficients , 2014, computational complexity.
[10] Peter Bürgisser,et al. A max-flow algorithm for positivity of Littlewood-Richardson coefficients , 2009 .
[11] Eric V. Denardo,et al. Flows in Networks , 2011 .
[12] Hariharan Narayanan. On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , 2006 .
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] W. Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.
[15] Ketan Mulmuley,et al. Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients , 2005, ArXiv.
[16] Felipe Cucker,et al. Condition - The Geometry of Numerical Algorithms , 2013, Grundlehren der mathematischen Wissenschaften.
[17] F. Eisenbrand,et al. On the complexity of computing Kronecker coecients and deciding positivity of Littlewood-Richardson coecients , 2008 .
[18] Jesús A. De Loera,et al. On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..
[19] Igor Pak,et al. Combinatorics and geometry of Littlewood-Richardson cones , 2005, Eur. J. Comb..
[20] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[21] E. Gentile. On the invariant factors , 1976 .
[22] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[23] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[24] A. Klyachko. Stable bundles, representation theory and Hermitian operators , 1998 .
[25] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[26] Christian Ikenmeyer. 2 Flow description of LR coefficients 2 . 1 Flows on digraphs , 2012 .
[27] D MulmuleyKetan. On P vs. NP and geometric complexity theory , 2011 .
[28] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.
[29] Anders S. Buch. The saturation conjecture (after A. Knutson and T. Tao) , 1998 .