AN ADAPTIVE MULTIBLOCK HIGH-ORDER FINITE-VOLUME METHOD FOR SOLVING THE SHALLOW-WATER EQUATIONS ON THE SPHERE

[1]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[2]  Shian-Jiann Lin,et al.  An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .

[3]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[4]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[5]  William M. Putman,et al.  A Finite-Volume Dynamical Core on the Cubed-Sphere Grid , 2009 .

[6]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[7]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[8]  Christiane Jablonowski,et al.  MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods , 2012, J. Comput. Phys..

[9]  Phillip Colella,et al.  High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids , 2015, J. Comput. Phys..

[10]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[11]  J. Lundquist,et al.  An Immersed Boundary Method for the Weather Research and Forecasting Model , 2014 .

[12]  Paul A. Ullrich,et al.  Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow‐water equations , 2014 .

[13]  Chungang Chen,et al.  An Adaptive Multimoment Global Model on a Cubed Sphere , 2011 .

[14]  Harold Ritchie,et al.  Application of the Semi-Lagrangian Method to a Spectral Model of the Shallow Water Equations , 1988 .

[15]  John M. Dennis,et al.  A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids , 2008 .

[16]  Hilary Weller,et al.  Controlling the Computational Modes of the Arbitrarily Structured C Grid , 2012 .

[17]  S. J. Thomas,et al.  The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation , 2005 .

[18]  Phillip Colella,et al.  High-order, finite-volume methods in mapped coordinates , 2010, J. Comput. Phys..

[19]  Amik St-Cyr,et al.  A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation , 2012 .

[20]  R. K. Scott,et al.  An initial-value problem for testing numerical models of the global shallow-water equations , 2004 .

[21]  Todd D. Ringler,et al.  A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations , 2008 .

[22]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[23]  James A. Rossmanith,et al.  A wave propagation method for hyperbolic systems on the sphere , 2006, J. Comput. Phys..

[24]  Saulo R. M. Barros,et al.  Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver , 1990 .

[25]  Bram van Leer,et al.  High-order finite-volume methods for the shallow-water equations on the sphere , 2010, J. Comput. Phys..

[26]  Jean Côté,et al.  Experiments with different discretizations for the shallow‐water equations on a sphere , 2012 .

[27]  Phillip Colella,et al.  A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS , 2011 .

[28]  Eric Deleersnijder,et al.  A finite element method for solving the shallow water equations on the sphere , 2009 .

[29]  Phillip Colella,et al.  A Freestream-Preserving High-Order Finite-Volume Method for Mapped Grids with Adaptive-Mesh Refinement , 2011 .

[30]  Almut Gassmann,et al.  A global hexagonal C‐grid non‐hydrostatic dynamical core (ICON‐IAP) designed for energetic consistency , 2013 .

[31]  Lei Bao,et al.  A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere , 2014, J. Comput. Phys..

[32]  Feng Xiao,et al.  A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid , 2010, J. Comput. Phys..

[33]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[34]  Phillip Colella,et al.  An adaptive cut‐cell method for environmental fluid mechanics , 2009 .

[35]  Peter H. Lauritzen,et al.  A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..

[36]  P. Colella,et al.  A Single Stage Flux-Corrected Transport Algorithm for High-Order Finite-Volume Methods , 2015, 1506.02999.

[37]  W. Collins,et al.  The Community Earth System Model: A Framework for Collaborative Research , 2013 .

[38]  F. Xiao,et al.  A Multimoment Finite-Volume Shallow-Water Model On The Yin-Yang Overset Spherical Grid , 2008 .

[39]  Phillip Colella,et al.  A projection method for low Mach number fast chemistry reacting flow , 1997 .

[40]  J. Hack,et al.  Spectral transform solutions to the shallow water test set , 1995 .

[41]  Tom Henderson,et al.  Running the NIM Next-Generation Weather Model on GPUs , 2010, 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing.

[42]  Feng Xiao,et al.  Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids , 2014, J. Comput. Phys..

[43]  Francis X. Giraldo,et al.  A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates , 2008, J. Comput. Phys..

[44]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[45]  G. D. Nastrom,et al.  A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft , 1985 .

[46]  D. Lüthi,et al.  A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .

[47]  R. Heikes,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .

[48]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[49]  M. A. Tolstykh,et al.  Vorticity-Divergence Semi-Lagrangian Shallow-Water Model of the Sphere Based on Compact Finite Differences , 2002 .

[50]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[51]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[52]  Jean Côté,et al.  An Accurate and Efficient Finite-Element Global Model of the Shallow-Water Equations , 1990 .