Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

[1]  Jun Ye,et al.  Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. , 2008, Optics express.

[2]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[3]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013 .

[4]  Christian Chardonnet,et al.  Quantum cascade laser frequency stabilization at the sub-Hz level , 2015 .

[5]  M. Hass,et al.  Residual absorption in infrared materials. , 1977, Applied optics.

[6]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[7]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[8]  Ad Lagendijk,et al.  Intrinsic intensity fluctuations in random lasers , 2006 .

[9]  A. Matsko,et al.  Ultralow noise miniature external cavity semiconductor laser , 2015, Nature Communications.

[10]  Laurent Larger,et al.  Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. , 2015, Optics letters.

[11]  M. E. Lines,et al.  Ultralow-Loss Glasses , 1986 .

[12]  Hongtao Lin,et al.  Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. , 2014, ACS nano.

[13]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[14]  D. J. Segelstein The complex refractive index of water , 1981 .

[15]  M. Rochette,et al.  Highly nonlinear hybrid AsSe-PMMA microtapers. , 2010, Optics express.

[16]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[17]  Mani Hossein-Zadeh,et al.  High-Q microresonators for mid-IR light sources and molecular sensors. , 2012, Optics letters.

[18]  Lute Maleki,et al.  Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. , 2015, Optics letters.

[19]  A. Foltynowicz,et al.  Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide , 2012, 1202.1216.

[20]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013, 10th International Conference on Group IV Photonics.

[21]  Anatoliy A. Savchenkov,et al.  Generation of Kerr combs centered at 4.5{\mu}m in crystalline microresonators pumped by quantum cascade lasers , 2015 .

[22]  Jun Ye,et al.  High-performance near- and mid-infrared crystalline coatings , 2016, 1604.00065.

[23]  Nonstationary nonlinear effects in optical microspheres , 2005 .

[24]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[25]  Roberto Raiteri,et al.  Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2006 .

[26]  S. S. Mitra,et al.  Multiphonon infrared absorption in highly transparent Mg F 2 , 1979 .

[27]  Vladimir S. Ilchenko,et al.  Ultrahigh optical Q factors of crystalline resonators in the linear regime , 2006 .

[28]  Maxime Jacquot,et al.  Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. , 2014, Optics letters.

[29]  Jun Ye,et al.  CAVITY-ENHANCED OPTICAL FREQUENCY COMB SPECTROSCOPY , 2009 .

[30]  Kamjou Mansour,et al.  Properties of fluoride microresonators for mid-IR applications. , 2016, Optics letters.

[31]  A. Matsko,et al.  Low threshold optical oscillations in a whispering gallery mode CaF(2) resonator. , 2004, Physical review letters.

[32]  Arnan Mitchell,et al.  High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. , 2015, Optics express.

[33]  Stephen Kozacik,et al.  Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. , 2013, Optics letters.

[34]  Simone Borri,et al.  Microcavity-stabilized quantum cascade laser , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[35]  H. Li The infrared absorption coefficient of alkali halides , 1980 .

[36]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[37]  Patrice Féron,et al.  Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators , 2010 .

[38]  T. Schwarzl,et al.  Mid-infrared high finesse microcavities and vertical-cavity lasers based on IV–VI semiconductor/BaF2 broadband Bragg mirrors , 2007 .

[39]  Steven S Brown,et al.  Absorption spectroscopy in high-finesse cavities for atmospheric studies. , 2003, Chemical reviews.

[40]  Yabai He,et al.  Rapidly swept continuous-wave cavity-ringdown spectroscopy , 2011 .

[41]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[42]  J. Adam,et al.  Aging process of photosensitive chalcogenide films deposited by electron beam deposition , 2011 .

[43]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[44]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[45]  Claire F. Gmachl,et al.  Mid-infrared quantum cascade lasers , 2012, Nature Photonics.

[46]  Vladimir S. Ilchenko,et al.  Ultimate Q of optical microsphere resonators , 1996, Other Conferences.

[47]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[48]  T. J. Kippenberg,et al.  Cavity optomechanics with ultrahigh-Q crystalline microresonators , 2009, 0911.1178.

[49]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[50]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[51]  Chams Baker,et al.  Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. , 2011, Optics letters.

[52]  A. Carroll,et al.  Extending high-finesse cavity techniques to the far-infrared. , 2013, The Review of scientific instruments.

[53]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[54]  J G Anderson,et al.  Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. , 2001, Applied optics.