Regelungs- und Sicherheitskonzepte für extrakorporale Systeme zur Lungenunterstützung / Automatic control and safety concepts for extracorporeal lung support

Zusammenfassung Die Anwendung extrakorporaler Lungenunterstützungsverfahren auf der Intensivstation ist bei schwerstem akutem Lungenversagen (ARDS) mit fortbestehender Hypoxie eine etablierte Therapie, obwohl der Einsatz von Regelungs- und Sicherheitskonzepten bisher höchstens ansatzweise realisiert ist. Ziel dieser Übersichtsarbeit ist die Darstellung technischer Verbesserungen, die die Sicherheit und Leistungsfähigkeit der verwendeten Systeme steigern und die Darstellung von Konzepten für Sicherheit und Regelung der Systeme, die die Anwendung optimieren und sicherer gestalten könnten. Technische Innovationen sind die Verwendung neuer plasmadichter Kompositemembranen in den Oxygenatoren und neuer Blutpumpen mit verlängerter Haltbarkeit und reduzierter Blutzellschädigung. Eine andere Möglichkeit ist die Verwendung einer arterio-venösen pumpenlosen Lungenunterstützung (pECLA), die einen Oxygenator mit vermindertem Druckabfall integriert, zur Vereinfachung des klinischen Managements und der Vermeidung Pumpen-bezogener Komplikationen. Erste Systeme für die dezidierte extrakorporale Membranoxygenierungs-Therapie (ECMO-Therapie) wurden mittlerweile entwickelt, um einfache Kontroll- und Sicherheitskonzepte in die ECMO zu integrieren. Diese sind aber immer noch nicht ausreichend, um die spezifischen Probleme der ECMO beim Langzeiteinsatz auf der Intensivstation zu lösen. Eine zuverlässigere Anwendung der ECMO auch ohne kontinuierliche Überwachung durch einen Kardiotechniker erfordert beispielsweise automatisierte Kontroll- und Sicherheitskonzepte zusätzlich zu verbesserten ECMO-Systemen. Ein weiterer Vorteil wäre der vereinfachte Intra- und Interhospitaltransport von Patienten mit ECMO. Abstract In some cases of severe acute respiratory distress syndrome, hypoxemia occurs despite optimized conservative therapy; however, extracorporeal membrane oxygenation (ECMO) can assure sufficient gas exchange. To increase safety and reliability of devices, the oxygenator design was optimized integrating new plasma-resistant composite membranes and new blood pumps are used with longer durability and reduced blood cell damage. Another approach is the use of an arterio-venous pumpless extracorporeal lung assist (pECLA) using an oxygenator with reduced pressure drop to simplify management and to avoid pump-related complications. First attempts were made to integrate basic control and safety concepts in ECMO circuits, but this does not seem to be sufficient to overcome the specific problems of ECMO (long-term use and limited supervision of the intensive care unit). The integration of sophisticated automated control and safety concepts in combination with revised ECMO circuits could allow a more reliable application of ECMO of the intensive care unit without continuous observation by a perfusionist. Easier intra- and interhospital transfer of patients with running ECMO would be another advantage.

[1]  Berno J. E. Misgeld,et al.  Modellierung und Regelung des arteriellen Blutflusses während der extrakorporalen Zirkulation (Modelling and Control of the Arterial Blood Flow During Extracorporeal Circulation) , 2005, Autom..

[2]  D Birnbaum,et al.  [On the way to an automatic heart-lung machine: a control system for oxygen tension in the oxygenator]. , 1997, Biomedizinische Technik. Biomedical engineering.

[3]  S. Engell Modelling and analysis of hybrid systems , 1998 .

[4]  S. I. Metz,et al.  Controller design for extracorporeal life support , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[5]  Stefan Kowalewski,et al.  Applying Model Checking to an Automotive Microcontroller Application , 2007, 2007 International Symposium on Industrial Embedded Systems.

[6]  Tadahiko Shinshi,et al.  A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller. , 2006, Artificial organs.

[7]  Jan Lunze,et al.  Fault Diagnosis of Discretely Controlled Continuous Systems by Means of Discrete-Event Models , 2008, Discret. Event Dyn. Syst..

[8]  J. Zwischenberger,et al.  Arteriovenous Extracorporeal Carbon Dioxide Removal A Mathematical Model and Experimental Evaluation , 1998, ASAIO journal.

[9]  Markus Zimmermann,et al.  First experiences with a new miniaturised life support system for mobile percutaneous cardiopulmonary bypass. , 2008, Resuscitation.

[10]  C. Brizard,et al.  Pump-induced haemolysis: a comparison of short-term ventricular assist devices , 2004, Perfusion.

[11]  N. Chauveau,et al.  Closed loop control of blood gases during surgical extracorporeal circulation , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  M Hexamer,et al.  Automatic Control of the Extra-Corporal Bypass: System Analysis, Modelling and Evaluation of Different Control Modes / Automatische Regelung der extrakorporalen Zirkulation: Analyse, Modelbildung und Evaluation von Regelstrategien , 2004, Biomedizinische Technik. Biomedical engineering.

[13]  Mikhail Skliar,et al.  Physiologic Control of Rotary Blood Pumps: An In Vitro Study , 2004, ASAIO journal.

[14]  Jens Gottlieb,et al.  Bridge to lung transplantation with the novel pumpless interventional lung assist device NovaLung. , 2006, Journal of Thoracic and Cardiovascular Surgery.

[15]  K M Sutherland,et al.  Independent control of blood gas PO2 and PCO2 in a bubble oxygenator. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[16]  H P Wendel,et al.  Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. , 1999, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[17]  Mikhail Skliar,et al.  Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study. , 2006, Artificial organs.

[18]  Jens Gottlieb,et al.  Bridge to lung transplantation with the extracorporeal membrane ventilator Novalung in the veno-venous mode: the initial Hannover experience. , 2007, ASAIO journal.

[19]  Stefan Kowalewski,et al.  Introduction to the Analysis and Verification of Hybrid Systems , 2002 .

[20]  T. Rölleke Stellenwert und Verbindlichkeit von Normen für die Sicherheit von Medizinprodukten , 2009, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[21]  R. Kopp,et al.  Therapie des akuten Lungenversagens in einem Behandlungszentrum , 2004, Der Anaesthesist.

[22]  D. S. Lawson,et al.  Hemolytic characteristics of three commercially available centrifugal blood pumps , 2005, Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.

[23]  Maria Deja,et al.  Epidemiologie und Pathophysiologie des akuten Lungenversagens (ARDS) , 2008, Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie : AINS.

[24]  Rolf Rossaint,et al.  Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury. , 2003, Artificial organs.

[25]  L. Samuels,et al.  Initial experience with the Abiomed AB5000 ventricular assist device system. , 2005, The Annals of thoracic surgery.

[26]  R. Kopp,et al.  Extrakorporale Membranoxygenierung beim akuten Lungenversagen , 2004, Der Anaesthesist.

[27]  A. Fisher,et al.  Development of a digital adaptive control system for PO2 regulation in a membrane oxygenator. , 1992, Journal of biomedical engineering.

[28]  Stefan Fischer,et al.  Temporary cardiac support with a mini-circuit system consisting of a centrifugal pump and a membrane ventilator. , 2009, Interactive cardiovascular and thoracic surgery.

[29]  Ann T. Tai,et al.  Long-Life Deep-Space Applications , 1998 .

[30]  D. Birnbaum,et al.  Auf dem Weg zum Herz-Lungenmaschinen-Automat: Ein Regelsystem für die Sauerstoffspannung im Oxygenator , 1997 .

[31]  Rolf Isermann,et al.  Model-based fault-detection and diagnosis - status and applications , 2004, Annu. Rev. Control..

[32]  Rolf Isermann,et al.  Model-based fault detection and diagnosis. Part A: methods , 1998 .

[33]  H Reul,et al.  Development of the MEDOS/HIA DeltaStream extracorporeal rotary blood pump. , 2001, Artificial organs.

[34]  Toshikazu Tobi A PRACTICAL APPLICATION OF FUZZY THEORY TO AN AUTO-REGULATION SYSTEM FOR EXTRA-CORPOREAL CIRCULATION(ECC) , 1995 .

[35]  Steffen Leonhardt,et al.  Automatisierungstechnik für die künstliche Beatmung – eine Standortbestimmung (Automatic Control of Mechanical Ventilation – a Position-fixing) , 2007, Autom..

[36]  Markus Ferrari,et al.  LIFEBRIDGE: a portable, modular, rapidly available "plug-and-play" mechanical circulatory support system. , 2005, The Annals of thoracic surgery.

[37]  Steffen Leonhardt,et al.  Automatisierung der extrakorporalen Membranoxygenierung , 2009 .

[38]  G. Peek,et al.  Early Experience with a Polymethyl Pentene Oxygenator for Adult Extracorporeal Life Support , 2002, ASAIO journal.

[39]  T. Dehe,et al.  Control of gaseous mixture in membrane oxygenators , 1988, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[40]  Robert H. Bartlett,et al.  Extracorporeal Life Support for Severe Acute Respiratory Distress Syndrome in Adults , 2004, Annals of surgery.

[41]  Stefan Kowalewski,et al.  Fault Handling Approaches on Dual-Core Microcontrollers in Safety-Critical Automotive Applications , 2008, ISoLA.

[42]  Raoul Praful Jetley,et al.  A formal methods approach to medical device review , 2006, Computer.

[43]  Berno J. E. Misgeld,et al.  Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties , 2005, Medical and Biological Engineering and Computing.

[44]  S Ichiba,et al.  Modifying a venovenous extracorporeal membrane oxygenation circuit to reduce recirculation. , 2000, The Annals of thoracic surgery.

[45]  Frank Weber,et al.  A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia* , 2006, Critical care medicine.

[46]  J. Lunze,et al.  Discrete-event models of quantized systems for diagnosis , 2001 .