Cytoskeletal proteins: lessons learned from bacteria

Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as ‘cytoskeletal’. However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional ‘cytoskeletal’ function. In this review, we discuss recent reports that cover the structures and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly ‘cytoskeletal’ functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.

[1]  E. Spiliotis,et al.  Cellular functions of actin- and microtubule-associated septins , 2021, Current Biology.

[2]  L. Aravind,et al.  Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. , 2021, eLife.

[3]  E. Garner,et al.  Single-molecule imaging reveals that Z ring condensation is essential for cell division in Bacillus subtilis , 2021, Nature Microbiology.

[4]  A. Helbig,et al.  Two novel heteropolymer‐forming proteins maintain the multicellular shape of the cyanobacterium Anabaena sp. PCC 7120 , 2020, The FEBS journal.

[5]  G. Chandra,et al.  A conserved cell division protein directly regulates FtsZ dynamics in filamentous and unicellular actinobacteria , 2020, bioRxiv.

[6]  Deepak Anand,et al.  SMC and the bactofilin/PadC scaffold have distinct yet redundant functions in chromosome segregation and organization in Myxococcus xanthus , 2020, bioRxiv.

[7]  T. Svitkina,et al.  The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing , 2020, Current Biology.

[8]  E. Goley,et al.  Bacterial cell division at a glance , 2020, Journal of Cell Science.

[9]  E. Goley,et al.  FtsA Regulates Z-Ring Morphology and Cell Wall Metabolism in an FtsZ C-Terminal Linker-Dependent Manner in Caulobacter crescentus , 2020, Journal of bacteriology.

[10]  Jie Xiao,et al.  Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism , 2019, Nature Communications.

[11]  K. Ramamurthi,et al.  A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface , 2019, Proceedings of the National Academy of Sciences.

[12]  Shishen Du,et al.  At the Heart of Bacterial Cytokinesis: The Z Ring. , 2019, Trends in microbiology.

[13]  J. Löwe,et al.  The structure of bactofilin filaments reveals their mode of membrane binding and lack of polarity , 2019, Nature Microbiology.

[14]  K. Flärdh,et al.  Apical assemblies of intermediate filament‐like protein FilP are highly dynamic and affect polar growth determinant DivIVA in Streptomyces venezuelae , 2019, Molecular microbiology.

[15]  A. Tholey,et al.  A network of filament-forming proteins maintains multicellular shape in the cyanobacterium Anabaena sp. PCC 7120 , 2019, bioRxiv.

[16]  J. Shaevitz,et al.  Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori , 2019, bioRxiv.

[17]  C. Dekker,et al.  Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae , 2019, Proceedings of the National Academy of Sciences.

[18]  C. Mullineaux,et al.  Cyanobacterial Septal Junctions: Properties and Regulation , 2018, Life.

[19]  D. Sherratt,et al.  Competition between DivIVA and the nucleoid for ParA binding promotes segrosome separation and modulates mycobacterial cell elongation , 2018, Molecular microbiology.

[20]  A. Amir,et al.  Mechanics and dynamics of translocating MreB filaments on curved membranes , 2019, eLife.

[21]  K. Ramamurthi,et al.  An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics , 2018, eLife.

[22]  M. Gaestel,et al.  Septins: Active GTPases or just GTP‐binding proteins? , 2018, Cytoskeleton.

[23]  K. C. Huang,et al.  Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division , 2018, eLife.

[24]  Kerwyn Casey Huang,et al.  How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction , 2018, Cell.

[25]  A. Amir,et al.  MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis , 2018, eLife.

[26]  Marissa G. Viola,et al.  FtsA reshapes membrane architecture and remodels the Z‐ring in Escherichia coli , 2018, Molecular microbiology.

[27]  J. Löwe,et al.  Prokaryotic cytoskeletons: protein filaments organizing small cells , 2018, Nature Reviews Microbiology.

[28]  K. C. Huang,et al.  RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape , 2017, bioRxiv.

[29]  P. Cossart,et al.  SUMOylation of human septins is critical for septin filament bundling and cytokinesis , 2017, The Journal of cell biology.

[30]  M. Thanbichler,et al.  Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus , 2017, Nature Communications.

[31]  J. Löwe,et al.  Cryo-EM reconstruction of AlfA from Bacillus subtilis reveals the structure of a simplified actin-like filament at 3.4 Å resolution , 2017, bioRxiv.

[32]  E. Goley,et al.  The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure in vitro , 2017, The Journal of Biological Chemistry.

[33]  M. McMurray,et al.  The step-wise pathway of septin hetero-octamer assembly in budding yeast , 2017, eLife.

[34]  R. Núnez-Ramírez,et al.  TubZ filament assembly dynamics requires the flexible C-terminal tail , 2017, Scientific Reports.

[35]  K. C. Huang,et al.  GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis , 2016, Science.

[36]  S. Scheres,et al.  X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization , 2016, Proceedings of the National Academy of Sciences.

[37]  Ueli Aebi,et al.  Intermediate Filaments: Structure and Assembly. , 2016, Cold Spring Harbor perspectives in biology.

[38]  N. Burroughs,et al.  Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis , 2016, Current Biology.

[39]  Maher M. Kassem,et al.  Structure of the Bacterial Cytoskeleton Protein Bactofilin by NMR Chemical Shifts and Sequence Variation. , 2016, Biophysical journal.

[40]  M. Schumacher,et al.  Molecular insights into DNA binding and anchoring by the Bacillus subtilis sporulation kinetochore-like RacA protein , 2016, Nucleic acids research.

[41]  R. Foisner,et al.  Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. , 2015, Annual review of biochemistry.

[42]  S. Subramaniam,et al.  A versatile nano display platform from bacterial spore coat proteins , 2015, Nature Communications.

[43]  M. Specht,et al.  Coiled Coil Rich Proteins (Ccrp) Influence Molecular Pathogenicity of Helicobacter pylori , 2015, PloS one.

[44]  C. Sachse,et al.  Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles , 2015, Nature.

[45]  D. Guzenko,et al.  Intermediate filament structure: the bottom-up approach. , 2015, Current opinion in cell biology.

[46]  B. Gentil,et al.  Neurofilament dynamics and involvement in neurological disorders , 2015, Cell and Tissue Research.

[47]  B. Habenstein,et al.  β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR , 2014, Proceedings of the National Academy of Sciences.

[48]  D. Agard,et al.  A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells , 2014, eLife.

[49]  Xiaomin Hu,et al.  A Novel Transcriptional Activator, tubX, Is Required for the Stability of Bacillus sphaericus Mosquitocidal Plasmid pBsph , 2014, Journal of bacteriology.

[50]  Andrew G. York,et al.  Asymmetric Division and Differential Gene Expression during a Bacterial Developmental Program Requires DivIVA , 2014, PLoS genetics.

[51]  D. Agard,et al.  Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis , 2014, Proceedings of the National Academy of Sciences.

[52]  K. Ramamurthi,et al.  Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature , 2013, PloS one.

[53]  M. Bramkamp,et al.  The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum , 2013, Molecular microbiology.

[54]  K. C. Huang,et al.  Dimer dynamics and filament organization of the bacterial cell division protein FtsA. , 2013, Journal of molecular biology.

[55]  M. Thanbichler,et al.  Nucleotide‐independent cytoskeletal scaffolds in bacteria , 2013, Cytoskeleton.

[56]  N. Ausmees,et al.  Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth , 2013, Proceedings of the National Academy of Sciences.

[57]  A. Janakiraman,et al.  FtsZ Ring Stability: of Bundles, Tubules, Crosslinks, and Curves , 2013, Journal of bacteriology.

[58]  J. Zakrzewska‐Czerwińska,et al.  Dynamic interplay of ParA with the polarity protein, Scy, coordinates the growth with chromosome segregation in Streptomyces coelicolor , 2013, Open Biology.

[59]  Richard M. Leggett,et al.  Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces , 2013, Proceedings of the National Academy of Sciences.

[60]  L. Aravind,et al.  ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein , 2012, Proceedings of the National Academy of Sciences.

[61]  K. Namba,et al.  A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation , 2012, Science.

[62]  Antje M. Hempel,et al.  Regulation of apical growth and hyphal branching in Streptomyces. , 2012, Current opinion in microbiology.

[63]  Christopher H. S. Aylett,et al.  Superstructure of the centromeric complex of TubZRC plasmid partitioning systems , 2012, Proceedings of the National Academy of Sciences.

[64]  Yong-Gyun Jung,et al.  The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces , 2012, Proceedings of the National Academy of Sciences.

[65]  D. Agard,et al.  A Phage Tubulin Assembles Dynamic Filaments by an Atypical Mechanism to Center Viral DNA within the Host Cell , 2012, Cell.

[66]  J. Löwe,et al.  FtsA forms actin‐like protofilaments , 2012, The EMBO journal.

[67]  Y. Sakaguchi,et al.  Tubulin homolog TubZ in a phage-encoded partition system , 2012, Proceedings of the National Academy of Sciences.

[68]  W. Margolin,et al.  The Early Divisome Protein FtsA Interacts Directly through Its 1c Subdomain with the Cytoplasmic Domain of the Late Divisome Protein FtsN , 2012, Journal of bacteriology.

[69]  K. Ramamurthi,et al.  Cellular Architecture Mediates DivIVA Ultrastructure and Regulates Min Activity in Bacillus subtilis , 2011, mBio.

[70]  P. D. de Boer,et al.  Direct Membrane Binding by Bacterial Actin MreB , 2011, Molecular cell.

[71]  V. Fromion,et al.  Processive Movement of MreB-Associated Cell Wall Biosynthetic Complexes in Bacteria , 2011, Science.

[72]  X. Zhuang,et al.  Coupled, Circumferential Motions of the Cell Wall Synthesis Machinery and MreB Filaments in B. subtilis , 2011, Science.

[73]  P. Graumann,et al.  Helicobacter pyloriPossesses Four Coiled-Coil-Rich Proteins That Form Extended Filamentous Structures and Control Cell Shape and Motility , 2011, Journal of bacteriology.

[74]  Roberto Dominguez,et al.  Actin structure and function. , 2011, Annual review of biophysics.

[75]  E. Hoiczyk,et al.  BacM, an N‐terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape , 2011, Molecular microbiology.

[76]  V. Karantza,et al.  Keratins in health and cancer: more than mere epithelial cell markers , 2011, Oncogene.

[77]  L. M. Mateos,et al.  Phosphorylation of a Novel Cytoskeletal Protein (RsmP) Regulates Rod-shaped Morphology in Corynebacterium glutamicum* , 2010, The Journal of Biological Chemistry.

[78]  T. Leonard,et al.  Features critical for membrane binding revealed by DivIVA crystal structure , 2010, The EMBO journal.

[79]  W. Vollmer,et al.  Peptidoglycan Crosslinking Relaxation Promotes Helicobacter pylori's Helical Shape and Stomach Colonization , 2010, Cell.

[80]  L. Nováková,et al.  Identification of Multiple Substrates of the StkP Ser/Thr Protein Kinase in Streptococcus pneumoniae , 2010, Journal of bacteriology.

[81]  J. Walshaw,et al.  A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. , 2010, Journal of structural biology.

[82]  Sean X. Sun,et al.  Dynamics of the Bacterial Intermediate Filament Crescentin In Vitro and In Vivo , 2010, PloS one.

[83]  Ariane Briegel,et al.  Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus , 2010, The EMBO journal.

[84]  T. Mignot,et al.  Bacterial motility complexes require the actin‐like protein, MreB and the Ras homologue, MglA , 2010, The EMBO journal.

[85]  R. Sockett,et al.  The First Bite— Profiling the Predatosome in the Bacterial Pathogen Bdellovibrio , 2010, PloS one.

[86]  Daniel A. Fletcher,et al.  Cell mechanics and the cytoskeleton , 2010, Nature.

[87]  P. Graumann,et al.  A Novel System of Cytoskeletal Elements in the Human Pathogen Helicobacter pylori , 2009, PLoS pathogens.

[88]  E. Egelman,et al.  Structural polymorphism of the ParM filament and dynamic instability. , 2009, Structure.

[89]  Kumaran S Ramamurthi,et al.  Negative membrane curvature as a cue for subcellular localization of a bacterial protein , 2009, Proceedings of the National Academy of Sciences.

[90]  Jessica K. Polka,et al.  The Structure and Assembly Dynamics of Plasmid Actin AlfA Imply a Novel Mechanism of DNA Segregation , 2009, Journal of bacteriology.

[91]  J. Errington,et al.  Localisation of DivIVA by targeting to negatively curved membranes , 2009, The EMBO journal.

[92]  D. Weibel,et al.  Bacterial cell curvature through mechanical control of cell growth , 2009, The EMBO journal.

[93]  C. Jacobs-Wagner,et al.  Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. , 2009, Genes & development.

[94]  J. Lutkenhaus,et al.  The conserved C‐terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinCC/MinD , 2009, Molecular microbiology.

[95]  K. Pogliano,et al.  Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. , 2008, Genes & development.

[96]  J. E. Patrick,et al.  MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis , 2008, Molecular microbiology.

[97]  N. Ausmees,et al.  Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces , 2008, Molecular microbiology.

[98]  R. Losick,et al.  ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. , 2008, Molecular cell.

[99]  J. Suh,et al.  Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. , 2008, Microbiology.

[100]  L. M. Mateos,et al.  DivIVA Is Required for Polar Growth in the MreB-Lacking Rod-Shaped Actinomycete Corynebacterium glutamicum , 2008, Journal of bacteriology.

[101]  D. Schüler,et al.  The Acidic Repetitive Domain of the Magnetospirillum gryphiswaldense MamJ Protein Displays Hypervariability but Is Not Required for Magnetosome Chain Assembly , 2007, Journal of bacteriology.

[102]  J. Pogliano,et al.  DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development , 2006, The EMBO journal.

[103]  D. Fadda,et al.  Streptococcus pneumoniae DivIVA: Localization and Interactions in a MinCD-Free Context , 2006, Journal of bacteriology.

[104]  S. E. Perry,et al.  The Bacillus subtilis DivIVA Protein Has a Sporulation-Specific Proximity to Spo0J , 2006, Journal of bacteriology.

[105]  S. Khan,et al.  A Novel FtsZ-Like Protein Is Involved in Replication of the Anthrax Toxin-Encoding pXO1 Plasmid in Bacillus anthracis , 2006, Journal of bacteriology.

[106]  Patrick England,et al.  The Scc Spirochetal Coiled-Coil Protein Forms Helix-Like Filaments and Binds to Nucleic Acids Generating Nucleoprotein Structures , 2006, Journal of bacteriology.

[107]  Grant J. Jensen,et al.  Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK , 2006, Science.

[108]  S. Miyagishima,et al.  Identification of cyanobacterial cell division genes by comparative and mutational analyses , 2005, Molecular microbiology.

[109]  J. Lutkenhaus,et al.  Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA , 2005, Molecular microbiology.

[110]  E. Garner,et al.  Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog , 2004, Science.

[111]  Ruifeng Yang,et al.  AglZ Is a Filament-Forming Coiled-Coil Protein Required for Adventurous Gliding Motility of Myxococcus xanthus , 2004, Journal of bacteriology.

[112]  Elisabetta Dejana,et al.  Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. , 2004, Physiological reviews.

[113]  C. Jacobs-Wagner,et al.  The Bacterial Cytoskeleton An Intermediate Filament-Like Function in Cell Shape , 2003, Cell.

[114]  S. Inouye,et al.  Novel Developmental Genes, fruCD, of Myxococcus xanthus: Involvement of a Cell Division Protein in Multicellular Development , 2003, Journal of bacteriology.

[115]  Detlef D. Leipe,et al.  Classification and evolution of P-loop GTPases and related ATPases. , 2002, Journal of molecular biology.

[116]  Jan Löwe,et al.  Prokaryotic origin of the actin cytoskeleton , 2001, Nature.

[117]  J. Izard,et al.  Cytoplasmic Filament-Deficient Mutant ofTreponema denticola Has Pleiotropic Defects , 2001, Journal of bacteriology.

[118]  Jan Löwe,et al.  Crystal structure of the cell division protein FtsA from Thermotoga maritima , 2000, The EMBO journal.

[119]  P. D. de Boer,et al.  ZipA-Induced Bundling of FtsZ Polymers Mediated by an Interaction between C-Terminal Domains , 2000, Journal of bacteriology.

[120]  R. Losick,et al.  A Four-Dimensional View of Assembly of a Morphogenetic Protein during Sporulation in Bacillus subtilis , 1999, Journal of bacteriology.

[121]  E. Nogales,et al.  Tubulin and FtsZ form a distinct family of GTPases , 1998, Nature Structural Biology.

[122]  L. Amos,et al.  Crystal structure of the bacterial cell-division protein FtsZ , 1998, Nature.

[123]  B E Dunn,et al.  Helicobacter pylori , 1997, Clinical microbiology reviews.

[124]  J. Errington,et al.  The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division , 1997, Molecular microbiology.

[125]  G. Weinstock,et al.  Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum , 1996, Journal of bacteriology.

[126]  H. Erickson,et al.  FtsZ, a prokaryotic homolog of tubulin? , 1995, Cell.

[127]  R. Losick,et al.  Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis , 1992, Journal of bacteriology.

[128]  W. Kabsch,et al.  Atomic structure of the actin: DNase I complex , 1990, Nature.

[129]  Quincy Teng,et al.  Structural Biology , 2013, Springer US.

[130]  D. Agard,et al.  The Bacterial Actin MamK INVITROASSEMBLYBEHAVIORANDFILAMENTARCHITECTURE , 2013 .

[131]  B. Wickstead,et al.  Molecular Evolution of FtsZ Protein Sequences Encoded Within the Genomes of Archaea, Bacteria, and Eukaryota , 2003, Journal of Molecular Evolution.

[132]  Erinna F. Lee,et al.  Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility , 2022 .