Using Radial Basis Function Networks for Function Approximation and Classification

The radial basis function (RBF) network has its foundation in the conventional approximation theory. It has the capability of universal approximation. The RBF network is a popular alternative to the well-known multilayer perceptron (MLP), since it has a simpler structure and a much faster training process. In this paper, we give a comprehensive survey on the RBF network and its learning. Many aspects associated with the RBF network, such as network structure, universal approimation capability, radial basis functions, RBF network learning, structure optimization, normalized RBF networks, application to dynamic system modeling, and nonlinear complex-valued signal processing, are described. We also compare the features and capability of the two models.

[1]  Visakan Kadirkamanathan A statistical inference based growth criterion for the RBF network , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[2]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[3]  Yukihiro Toyoda,et al.  A parameter optimization method for radial basis function type models , 2003, IEEE Trans. Neural Networks.

[4]  A. V.DavidSánchez,et al.  Robustization of a learning method for RBF networks , 1995, Neurocomputing.

[5]  T. Poggio,et al.  Networks and the best approximation property , 1990, Biological Cybernetics.

[6]  Qiuming Zhu,et al.  A global learning algorithm for a RBF network , 1999, Neural Networks.

[7]  Ying Li,et al.  WAV-a weight adaptation algorithm for normalized radial basis function networks , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[8]  Héctor Pomares,et al.  Time series analysis using normalized PG-RBF network with regression weights , 2002, Neurocomputing.

[9]  Peter J. W. Rayner,et al.  Generalization and PAC learning: some new results for the class of generalized single-layer networks , 1995, IEEE Trans. Neural Networks.

[10]  Haralambos Sarimveis,et al.  A new algorithm for online structure and parameter adaptation of RBF networks , 2003, Neural Networks.

[11]  Daming Shi,et al.  Radial Basis Function Network Pruning by Sensitivity Analysis , 2004, Canadian Conference on AI.

[12]  Saleem A. Kassam,et al.  Channel Equalization Using Adaptive Complex Radial Basis Function Networks , 1995, IEEE J. Sel. Areas Commun..

[13]  Narasimhan Sundararajan,et al.  A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation , 2005, IEEE Transactions on Neural Networks.

[14]  Y.-H. Pao,et al.  The functional link net in structural pattern recognition , 1990, IEEE TENCON'90: 1990 IEEE Region 10 Conference on Computer and Communication Systems. Conference Proceedings.

[15]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[16]  Jin-Tsong Jeng,et al.  Annealing robust radial basis function networks for function approximation with outliers , 2004, Neurocomputing.

[17]  Marcelino Lázaro,et al.  A new EM-based training algorithm for RBF networks , 2003, Neural Networks.

[18]  James T. Kwok,et al.  Constructive algorithms for structure learning in feedforward neural networks for regression problems , 1997, IEEE Trans. Neural Networks.

[19]  Paul M. Chau,et al.  A radial basis function neurocomputer implemented with analog VLSI circuits , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[20]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[21]  George W. Irwin,et al.  A hybrid linear/nonlinear training algorithm for feedforward neural networks , 1998, IEEE Trans. Neural Networks.

[22]  Kamesh Subbarao,et al.  Direction-Dependent Learning Approach for Radial Basis Function Networks , 2007, IEEE Transactions on Neural Networks.

[23]  Jun Zhang,et al.  Wavelet neural networks for function learning , 1995, IEEE Trans. Signal Process..

[24]  Qinghua Zhang,et al.  Wavelet networks , 1992, IEEE Trans. Neural Networks.

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  A. Murray,et al.  Programmable analogue VLSI for radial basis function networks , 1993 .

[27]  John Yen,et al.  Radial basis function networks, regression weights, and the expectation-maximization algorithm , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[28]  B. Todorovic,et al.  Sequential growing and pruning of radial basis function network , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[29]  Cheng-Liang Chen,et al.  Hybrid learning algorithm for Gaussian potential function networks , 1993 .

[30]  Julio Ortega Lopera,et al.  Improved RAN sequential prediction using orthogonal techniques , 2001, Neurocomputing.

[31]  Michael E. Tipping,et al.  Shadow targets: a novel algorithm for topographic projections by radial basis functions , 1997 .

[32]  Nathan Intrator,et al.  A Hybrid Projection Based and Radial Basis Function Architecture , 2000, Multiple Classifier Systems.

[33]  Elisa Ricci,et al.  Improved pruning strategy for radial basis function networks with dynamic decay adjustment , 2006, Neurocomputing.

[34]  Habib Mehrez,et al.  Architecture and design methodology of the RBF-DDA neural network , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[35]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[36]  Aristidis Likas,et al.  Shared kernel models for class conditional density estimation , 2001, IEEE Trans. Neural Networks.

[37]  Kezhi Mao,et al.  RBF neural network center selection based on Fisher ratio class separability measure , 2002, IEEE Trans. Neural Networks.

[38]  Ruben Garrido,et al.  Stable neurovisual servoing for robot manipulators , 2006, IEEE Trans. Neural Networks.

[39]  Narasimhan Sundararajan,et al.  Fully complex extreme learning machine , 2005, Neurocomputing.

[40]  Bernd Fritzke Supervised Learning with Growing Cell Structures , 1993, NIPS.

[41]  Chee Kheong Siew,et al.  Can threshold networks be trained directly? , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[42]  Péter András,et al.  Orthogonal RBF Neural Network Approximation , 1999, Neural Processing Letters.

[43]  Shie-Jue Lee,et al.  An ART-based construction of RBF networks , 2002, IEEE Trans. Neural Networks.

[44]  Jukka Saarinen,et al.  Centroid based Multilayer Perceptron Networks , 2004, Neural Processing Letters.

[45]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[46]  David McLean,et al.  On Global–Local Artificial Neural Networks for Function Approximation , 2006, IEEE Transactions on Neural Networks.

[47]  Roman Rosipal,et al.  Prediction of Chaotic Time-Series with a Resource-Allocating RBF Network , 1998, Neural Processing Letters.

[48]  Pawel Strumillo,et al.  Kernel orthonormalization in radial basis function neural networks , 1997, IEEE Trans. Neural Networks.

[49]  Nikola Pavesic,et al.  A Fast Simplified Fuzzy ARTMAP Network , 2003, Neural Processing Letters.

[50]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[51]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[52]  W. T. Miller,et al.  CMAC: an associative neural network alternative to backpropagation , 1990, Proc. IEEE.

[53]  Sheng Chen,et al.  Practical identification of NARMAX models using radial basis functions , 1990 .

[54]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[55]  Gregory J. Wolff,et al.  Optimal Brain Surgeon and general network pruning , 1993, IEEE International Conference on Neural Networks.

[56]  Lajos Hanzo,et al.  Symmetric RBF Classifier for Nonlinear Detection in Multiple-Antenna-Aided Systems , 2008, IEEE Transactions on Neural Networks.

[57]  Chris J. Harris,et al.  The interpolation capabilities of the binary CMAC , 1993, Neural Networks.

[58]  Yaohua Xiong,et al.  Training Reformulated Radial Basis Function Neural Networks Capable of Identifying Uncertainty in Data Classification , 2006, IEEE Transactions on Neural Networks.

[59]  Visakan Kadirkamanathan,et al.  STATISTICAL CONTROL OF GROWING AND PRUNING IN RBF-LIKE NEURAL NETWORKS , 1997 .

[60]  Rekha Govil,et al.  Neural Networks in Signal Processing , 2000 .

[61]  Stefanos D. Kollias,et al.  Intelligent initialization of resource allocating RBF networks , 2005, Neural Networks.

[62]  Guido Bugmann,et al.  Normalized Gaussian Radial Basis Function networks , 1998, Neurocomputing.

[63]  Michael Heiss,et al.  Multiplication-free radial basis function network , 1996, IEEE Trans. Neural Networks.

[64]  A. V.DavidSánchez Second derivative dependent placement of RBF centers , 1995, Neurocomputing.

[65]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[66]  Federico Girosi,et al.  On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions , 1996, Neural Computation.

[67]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[68]  M. N. Shanmukha Swamy,et al.  A fast neural beamformer for antenna arrays , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[69]  Dan Simon,et al.  Training radial basis neural networks with the extended Kalman filter , 2002, Neurocomputing.

[70]  Y Lu,et al.  A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks , 1997, Neural Computation.

[71]  Michael R. Berthold,et al.  Boosting the Performance of RBF Networks with Dynamic Decay Adjustment , 1994, NIPS.

[72]  P. Frasconi,et al.  Representation of Finite State Automata in Recurrent Radial Basis Function Networks , 1996, Machine Learning.

[73]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[74]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[75]  Nicolaos B. Karayiannis,et al.  Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques , 1997, IEEE Trans. Neural Networks.

[76]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[77]  Aristidis Likas,et al.  An incremental training method for the probabilistic RBF network , 2006, IEEE Trans. Neural Networks.

[78]  P. Gubian,et al.  VLSI design of radial functions hardware generator for neural computations , 1994, Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems.

[79]  Gene H. Golub,et al.  Matrix computations , 1983 .

[80]  Sheng Chen,et al.  Regularized orthogonal least squares algorithm for constructing radial basis function networks , 1996 .

[81]  Visakan Kadirkamanathan,et al.  Dynamic structure neural networks for stable adaptive control of nonlinear systems , 1996, IEEE Trans. Neural Networks.

[82]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[83]  Rick L. Jenison,et al.  A Spherical Basis Function Neural Network for Modeling Auditory Space , 1996, Neural Computation.

[84]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[85]  Sheng Chen,et al.  An approach for constructing parsimonious generalized Gaussian kernel regression models , 2004, Neurocomputing.

[86]  Jukka Saarinen,et al.  Accelerating training of radial basis function networks with Cascade-Correlation algorithm , 1995, Neurocomputing.

[87]  W. Murray,et al.  An algorithm for RLS identification parameters that vary quickly with time , 1993, IEEE Trans. Autom. Control..

[88]  Peter Grant,et al.  Orthogonal least squares algorithms for training multi-output radial basis function networks , 1991 .

[89]  Claudio Moraga,et al.  Extended Kalman Filter Trained Recurrent Radial Basis Function Network in Nonlinear System Identification , 2002, ICANN.

[90]  Visakan Kadirkamanathan,et al.  A Function Estimation Approach to Sequential Learning with Neural Networks , 1993, Neural Computation.

[91]  Alaa F. Sheta,et al.  Time-series forecasting using GA-tuned radial basis functions , 2001, Inf. Sci..

[92]  James J. Carroll,et al.  Approximation of nonlinear systems with radial basis function neural networks , 2001, IEEE Trans. Neural Networks.

[93]  Dale Schuurmans,et al.  Automatic basis selection techniques for RBF networks , 2003, Neural Networks.

[94]  G. Dii,et al.  VLSI IMPLEMENTATION OF GRBF (Gaussian Radial Basis Function) NETWORKS , 2000 .

[95]  D. Lowe On the use of nonlocal and nonpositive definite basis functions in radial basis function networks , 1995 .

[96]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[97]  Dingli Yu A Localized Forgetting Method for Gaussian RBFN Model Adaptation , 2004, Neural Processing Letters.

[98]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[99]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[100]  H. Akaike A new look at the statistical model identification , 1974 .

[101]  Asim Roy,et al.  An algorithm to generate radial basis function (RBF)-like nets for classification problems , 1995, Neural Networks.

[102]  Thomas G. Dietterich,et al.  Improving the Performance of Radial Basis Function Networks by Learning Center Locations , 1991, NIPS.

[103]  Stephen A. Billings,et al.  Dual-orthogonal radial basis function networks for nonlinear time series prediction , 1998, Neural Networks.

[104]  Michel Benaïm,et al.  On Functional Approximation with Normalized Gaussian Units , 1994, Neural Comput..

[105]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[106]  Bernard Mulgrew,et al.  Complex-valued radial basic function network, Part I: Network architecture and learning algorithms , 1994, Signal Process..

[107]  S. Billings,et al.  Givens rotation based fast backward elimination algorithm for RBF neural network pruning , 1997 .

[108]  D. Gorinevsky An approach to parametric nonlinear least square optimization and application to task-level learning control , 1997, IEEE Trans. Autom. Control..

[109]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[110]  N. Alberto Borghese,et al.  Hierarchical RBF networks and local parameters estimate , 1998, Neurocomputing.

[111]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[112]  Chee Kheong Siew,et al.  Universal Approximation using Incremental Constructive Feedforward Networks with Random Hidden Nodes , 2006, IEEE Transactions on Neural Networks.

[113]  Tommy W. S. Chow,et al.  Neural computation approach for developing a 3D shape reconstruction model , 2001, IEEE Trans. Neural Networks.

[114]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[115]  Horst Bischof,et al.  An efficient MDL-based construction of RBF networks , 1998, Neural Networks.

[116]  David Lowe,et al.  The optimised internal representation of multilayer classifier networks performs nonlinear discriminant analysis , 1990, Neural Networks.

[117]  Mohamad T. Musavi,et al.  On the training of radial basis function classifiers , 1992, Neural Networks.

[118]  Pjw Rayner,et al.  A new connectionist model based on a non-linear adaptive filter , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[119]  Andrew Chi-Sing Leung,et al.  A Fault-Tolerant Regularizer for RBF Networks , 2008, IEEE Transactions on Neural Networks.

[120]  Dingli Yu,et al.  Selecting radial basis function network centers with recursive orthogonal least squares training , 2000, IEEE Trans. Neural Networks Learn. Syst..

[121]  Mauro Maggioni,et al.  Multiscale approximation with hierarchical radial basis functions networks , 2004, IEEE Transactions on Neural Networks.

[122]  Sheng Chen,et al.  Sparse modeling using orthogonal forward regression with PRESS statistic and regularization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[123]  Narasimhan Sundararajan,et al.  An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[124]  Y. Abe,et al.  Fast computation of RBF coefficients for regularly sampled inputs , 2003 .

[125]  Z. Ryad,et al.  The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[126]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[127]  Nikola Pavesic,et al.  Training RBF networks with selective backpropagation , 2004, Neurocomputing.

[128]  Dimitris G. Papageorgiou,et al.  Neural-network methods for boundary value problems with irregular boundaries , 2000, IEEE Trans. Neural Networks Learn. Syst..

[129]  Ke-Lin Du,et al.  Clustering: A neural network approach , 2010, Neural Networks.

[130]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[131]  Andrew Chi-Sing Leung,et al.  An RBF-based compression method for image-based relighting , 2006, IEEE Transactions on Image Processing.

[132]  M.N.S. Swamy,et al.  Neural networks in a softcomputing framework , 2006 .

[133]  Anna Esposito,et al.  Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm , 2000, Neural Networks.

[134]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[135]  Alan F. Murray,et al.  Pulsed VLSI for RBF neural networks , 1996, Proceedings of Fifth International Conference on Microelectronics for Neural Networks.

[136]  Michael J. Korenberg,et al.  Iterative fast orthogonal search algorithm for MDL-based training of generalized single-layer networks , 2000, Neural Networks.

[137]  Andrew Chi-Sing Leung,et al.  All-Frequency Lighting with Multiscale Spherical Radial Basis Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[138]  Michael R. Berthold,et al.  A time delay radial basis function network for phoneme recognition , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[139]  Andrew R. Webb,et al.  Functional approximation by feed-forward networks: a least-squares approach to generalization , 1994, IEEE Trans. Neural Networks.

[140]  Nicolaos B. Karayiannis,et al.  Reformulated radial basis neural networks trained by gradient descent , 1999, IEEE Trans. Neural Networks.

[141]  D. L. Reilly,et al.  A neural model for category learning , 1982, Biological Cybernetics.

[142]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[143]  Chein-I Chang,et al.  Robust radial basis function neural networks , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[144]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[145]  Bernd Fritzke,et al.  Fast learning with incremental RBF networks , 1994, Neural Processing Letters.

[146]  Simon Haykin,et al.  A mutual information-based learning strategy and its application to radar , 1996 .

[147]  G. Dorffner UNIFIED FRAMEWORK FOR MLPs AND RBFNs: INTRODUCING CONIC SECTION FUNCTION NETWORKS , 1994 .

[148]  S. Chen,et al.  Fast orthogonal least squares algorithm for efficient subset model selection , 1995, IEEE Trans. Signal Process..

[149]  Steven J. Nowlan,et al.  Maximum Likelihood Competitive Learning , 1989, NIPS.

[150]  Lajos Hanzo,et al.  Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification , 2008, Neurocomputing.

[151]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[152]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[153]  Paramasivan Saratchandran,et al.  Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm , 1998, IEEE Trans. Neural Networks.

[154]  Silvio Romero de Lemos Meira,et al.  Improving constructive training of RBF networks through selective pruning and model selection , 2005, Neurocomputing.

[155]  Federico Girosi,et al.  Generalization bounds for function approximation from scattered noisy data , 1999, Adv. Comput. Math..

[156]  Andrew Chi-Sing Leung,et al.  Efficient Relighting of RBF-Based Illumination Adjustable Images , 2009, IEEE Transactions on Neural Networks.

[157]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[158]  Fan Yang,et al.  Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification , 2003, IEEE Trans. Neural Networks.

[159]  Andrew Chi-Sing Leung,et al.  On Objective Function, Regularizer, and Prediction Error of a Learning Algorithm for Dealing With Multiplicative Weight Noise , 2009, IEEE Transactions on Neural Networks.

[160]  Neil E. Cotter,et al.  The CMAC and a theorem of Kolmogorov , 1992, Neural Networks.

[161]  Jürgen Paetz,et al.  Reducing the number of neurons in radial basis function networks with dynamic decay adjustment , 2004, Neurocomputing.

[162]  Ta-Hsin Li,et al.  Multiscale Representation and Analysis of Spherical Data by Spherical Wavelets , 1999, SIAM J. Sci. Comput..

[163]  Jean-Marc Vesin,et al.  An amplitude-dependent autoregressive model based on a radial basis functions expansion , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[164]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[165]  Iulian B. Ciocoiu,et al.  RBF networks training using a dual extended Kalman filter , 2002, Neurocomputing.

[166]  Souhwan Jung,et al.  Extended complex RBF and its application to M-QAM in presence of co-channel interference , 1999 .

[167]  Mark J. L. Orr,et al.  Regularization in the Selection of Radial Basis Function Centers , 1995, Neural Computation.

[168]  Narasimhan Sundararajan,et al.  A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks , 2006, IEEE Transactions on Neural Networks.

[169]  Adam Krzyzak,et al.  Radial Basis Function Networks and Complexity Regularization in Function Learning , 2022 .

[170]  Shu-Cherng Fang,et al.  Relaxed conditions for radial-basis function networks to be universal approximators , 2003, Neural Networks.

[171]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[172]  Narasimhan Sundararajan,et al.  Communication channel equalization using complex-valued minimal radial basis function neural networks , 2002, IEEE Trans. Neural Networks.

[173]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[174]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[175]  George W. Irwin,et al.  Improving neural network training solutions using regularisation , 2001, Neurocomputing.

[176]  Dingli Yu,et al.  A Recursive Orthogonal Least Squares Algorithm for Training RBF Networks , 1997, Neural Processing Letters.

[177]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.