Impact of the plasticity modeling on fatigue life prediction for steels showing modest non-proportional hardening

[1]  J. Mei,et al.  A Moment of Load Path-Based Parameter for Modeling Multiaxial Fatigue Damage of Welded Structures , 2023, International Journal of Fatigue.

[2]  Punit Arora,et al.  Comparing fatigue life prediction capability of critical plane models using multiaxial test database on 17 materials , 2023, Fatigue & Fracture of Engineering Materials & Structures.

[3]  Punit Arora,et al.  An improved strain path dependent model under multiaxial cyclic loading for simulating material response of low C-Mn steel , 2022, International Journal of Fatigue.

[4]  G. Lesiuk,et al.  Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings , 2022, International Journal of Fatigue.

[5]  J. Correia,et al.  On the use of the cumulative strain energy density for fatigue life assessment in advanced high-strength steels , 2022, International Journal of Fatigue.

[6]  A. Karolczuk,et al.  Verification of the Tanaka non-proportional isotropic cyclic hardening model under asynchronous loading , 2022, International Journal of Solids and Structures.

[7]  P. Dong,et al.  Modeling of Non-Proportional Multiaxial Fatigue under Synchronous and Asynchronous Sinusoidal Loading Conditions , 2022, International Journal of Fatigue.

[8]  F. Berto,et al.  Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading , 2022, International Journal of Fatigue.

[9]  Yuanxin Luo,et al.  Implementation of Sobol’s sensitivity analysis to cyclic plasticity model with parameter uncertainty , 2022, International Journal of Fatigue.

[10]  M. Mehdizadeh,et al.  On the application of fracture fatigue entropy to multiaxial loading , 2021 .

[11]  M. Samal,et al.  Multiaxial fatigue tests under variable strain paths and asynchronous loading and assessment of fatigue life using critical plane models , 2020 .

[12]  Ł. Pejkowski,et al.  Stress-strain response and fatigue life of four metallic materials under asynchronous loadings: Experimental observations , 2019, International Journal of Fatigue.

[13]  Huang Yuan,et al.  Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions , 2019, International Journal of Fatigue.

[14]  Aleksander Karolczuk,et al.  Evaluation of the Fatemi-Socie damage parameter for the fatigue life calculation with application of the Chaboche plasticity model , 2018, Fatigue & Fracture of Engineering Materials & Structures.

[15]  Ł. Pejkowski,et al.  Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models , 2017 .

[16]  Marco Antonio Meggiolaro,et al.  Computational implementation of a non-linear kinematic hardening formulation for tension–torsion multiaxial fatigue calculations , 2016 .

[17]  Noel M. Harrison,et al.  Cyclic plasticity of welded P91 material for simple and complex power plant connections , 2016 .

[18]  Ayhan Ince,et al.  A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings , 2014 .

[19]  Marco Antonio Meggiolaro,et al.  Prediction of non-proportionality factors of multiaxial histories using the Moment Of Inertia method , 2014 .

[20]  H. Jahed,et al.  The choice of cyclic plasticity models in fatigue life assessment of 304 and 1045 steel alloys based on the critical plane-energy fatigue damage approach , 2012 .

[21]  Ayhan Ince,et al.  Load path sensitivity and fatigue life estimation of 30CrNiMo8HH , 2012 .

[22]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[23]  A. Fatemi,et al.  Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths , 2010 .

[24]  I. Metselaar,et al.  Evaluating a strain energy fatigue method using cyclic plasticity models , 2010 .

[25]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[26]  Yanyao Jiang,et al.  Benchmark experiments and characteristic cyclic plasticity deformation , 2008 .

[27]  Iman Khalaji,et al.  An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions , 2007 .

[28]  Michael Vormwald,et al.  Deformation behaviour, short crack growth and fatigue livesunder multiaxial nonproportional loading , 2006 .

[29]  D. Skibicki Multiaxial fatigue life and strength criteria for non-proportional loading* , 2006 .

[30]  Janusz Sempruch,et al.  Use of a load non-proportionality measure in fatigue under out-of-phase combined bending and torsion , 2004 .

[31]  Michael Vormwald,et al.  A plasticity model for calculating stress–strain sequences under multiaxial nonproportional cyclic loading , 2003 .

[32]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[33]  Sylvain Calloch,et al.  Triaxial tension–compression tests for multiaxial cyclic plasticity , 1999 .

[34]  Huseyin Sehitoglu,et al.  Modeling of cyclic ratchetting plasticity, Part II: Comparison of model simulations with experiments , 1996 .

[35]  P. Gallo,et al.  An experimental investigation of cyclic hardening of 316 stainless steel and of 2024 aluminium alloy under multiaxial loadings , 1989 .

[36]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[37]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part II: Application of Internal Variable Concepts to the 316 Stainless Steel , 1983 .

[38]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept , 1983 .

[39]  Zenon Mróz,et al.  On the description of anisotropic workhardening , 1967 .

[40]  S. Gupta,et al.  Proposing an improved cyclic plasticity material model for assessment of multiaxial response of low C-Mn steel , 2021 .

[41]  M. Meggiolaro,et al.  Non-proportional hardening models for predicting mean and peak stress evolution in multiaxial fatigue using Tanaka’s incremental plasticity concepts , 2016 .

[42]  E. Tanaka SECTION 5.9 – A Model of Nonproportional Cyclic Viscoplasticity , 2001 .

[43]  E. Tanaka,et al.  A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. , 1994 .

[44]  Fernand Ellyin,et al.  In-phase and out-of-phase multiaxial fatigue , 1991 .

[45]  J. A. Bannantine,et al.  A Variable Amplitude Multiaxial Fatigue Life Prediction Methods , 1989 .

[46]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[47]  Fernand Ellyin,et al.  Multiaxial Fatigue Damage Criterion , 1988 .

[48]  E. Tanaka,et al.  Effects of strain path shapes on non-proportional cyclic plasticity , 1985 .