Fast and Efficient Parallel Inversion of Toeplitz and Block Toeplitz Matrices

We call an n×n matrix A well-conditioned if log(cond A) = O(log n). We compute the inverse of any n×n well-conditioned and diagonally dominant Hermitian Toeplitz matrix A (with errors 1/2N, N = nc for a constant c) by a numerically stable algorithm using O(log2 log log n) parallel arithmetic steps and n log2n/log log n processors. This dramatically improves the previous results. We also compute the inverse and all the coefficients of the characteristic polynomial of any n×n nonsingular Toeplitz matrix A filled with integers (and possibly ill-conditioned) by a distinct algorithm using O(log2n) parallel arithmetic steps, O(n2) processors, and the precision of O(n log(n∥A∥1) binary digits. The results have several modifications, extensions, and further applications.

[1]  Tamir Shalom,et al.  On inversion of Toeplitz and close to Toeplitz matrices , 1986 .

[2]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[3]  Adi Ben-Israel,et al.  A note on an iterative method for generalized inversion of matrices , 1966 .

[4]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[5]  W. Gragg,et al.  The Padé Table and Its Relation to Certain Algorithms of Numerical Analysis , 1972 .

[6]  Michael J. Quinn,et al.  Designing Efficient Algorithms for Parallel Computers , 1987 .

[7]  William F. Trench,et al.  An Algorithm for the Inversion of Finite Hankel Matrices , 1965 .

[8]  T. Kailath,et al.  Fast Parallel Algorithms for QR and Triangular Factorization , 1987 .

[9]  Thomas Kailath,et al.  Generalized Gohberg-Semencul Formulas for Matrix Inversion , 1989 .

[10]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[11]  F. Hoog A new algorithm for solving Toeplitz systems of equations , 1987 .

[12]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[13]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[14]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[15]  Joachim von zur Gathen Representations and Parallel Computations for Rational Functions , 1986, SIAM J. Comput..

[16]  L. Ljung,et al.  Extended Levinson and Chandrasekhar equations for general discrete-time linear estimation problems , 1978 .

[17]  Victor Y. Pan,et al.  Fast and E cient Parallel Evaluation of the Zeros of a Polynomial Having Only Real Zeros , 1989 .

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[20]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[21]  Thomas Kailath,et al.  Fast projection methods for minimal design problems in linear system theory , 1980, Autom..

[22]  Tamir Shalom,et al.  On inversion of block Toeplitz matrices , 1985 .

[23]  V. Pan Sequential and parallel complexity of approximate evaluation of polynomial zeros , 1987 .

[24]  D. Faddeev,et al.  Computational methods of linear algebra , 1959 .

[25]  J. Hopcroft,et al.  Fast parallel matrix and GCD computations , 1982, FOCS 1982.

[26]  F. Gustavson,et al.  Fast algorithms for rational Hermite approximation and solution of Toeplitz systems , 1979 .

[27]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[28]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[29]  Victor Y. Pan,et al.  Complexity of Parallel Matrix Computations , 1987, Theor. Comput. Sci..

[30]  Bruce Ronald. Musicus,et al.  Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices , 1988 .

[31]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[32]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[33]  B. Anderson,et al.  Greatest common divisor via generalized Sylvester and Bezout matrices , 1978 .

[34]  Victor Y. Pan,et al.  Efficient parallel solution of linear systems , 1985, STOC '85.

[35]  L. Csanky,et al.  Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..

[36]  Victor Y. Pan,et al.  Fast and Efficient Parallel Algorithms for the Exact Inversion of Integer Matrices , 1985, FSTTCS.

[37]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[38]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .