Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

[1]  Hans Clevers,et al.  Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis , 2013, The EMBO journal.

[2]  E. Furth,et al.  An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. , 2013, Cell reports.

[3]  T. Imai,et al.  Genetic reconstitution of tumorigenesis in primary intestinal cells , 2013, Proceedings of the National Academy of Sciences.

[4]  H. Clevers,et al.  Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications , 2013, Science.

[5]  Jeffrey J Meyer,et al.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5) , 2013 .

[6]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[7]  S. Toda,et al.  Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche. , 2013, Biochemical and biophysical research communications.

[8]  R. Hynds,et al.  Concise Review: The Relevance of Human Stem Cell‐Derived Organoid Models for Epithelial Translational Medicine , 2013, Stem cells.

[9]  A. Riggs,et al.  Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel , 2013, Proceedings of the National Academy of Sciences.

[10]  D. Bar-Sagi,et al.  Microdissection and culture of murine pancreatic ductal epithelial cells. , 2013, Methods in molecular biology.

[11]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[12]  Matthias Stelzner,et al.  A nomenclature for intestinal in vitro cultures. , 2012, American journal of physiology. Gastrointestinal and liver physiology.

[13]  I. Sandovici,et al.  Igf2 pathway dependency of the Trp53 developmental and tumour phenotypes , 2012, EMBO molecular medicine.

[14]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[15]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[16]  J. Brugge,et al.  Outgrowth of Single Oncogene-expressing Cells from Suppressive Epithelial Environments , 2012, Nature.

[17]  Xiaofei Zheng,et al.  Igf2-derived intronic miR-483 promotes mouse hepatocellular carcinoma cell proliferation , 2012, Molecular and Cellular Biochemistry.

[18]  A. Rust,et al.  Insertional mutagenesis identifies multiple networks of co-operating genes driving intestinal tumorigenesis , 2011, Nature Genetics.

[19]  T. Itoh,et al.  Oncogene-mediated human lung epithelial cell transformation produces adenocarcinoma phenotypes in vivo. , 2011, Cancer research.

[20]  D. van der Kooy,et al.  The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. , 2011, Cell stem cell.

[21]  Xian-gui Hu,et al.  MicroRNA 483‐3p suppresses the expression of DPC4/Smad4 in pancreatic cancer , 2011, FEBS letters.

[22]  Elizabeth E. Hoskins,et al.  Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro , 2010, Nature.

[23]  D. Bar-Sagi,et al.  Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. , 2010, Cancer cell.

[24]  C. Croce,et al.  Oncogenic role of miR-483-3p at the IGF2/483 locus. , 2010, Cancer research.

[25]  M. Bissell,et al.  Tumor engineering: the other face of tissue engineering. , 2010, Tissue engineering. Part A.

[26]  Jing Jiang,et al.  DNA methylation-dependent repression of PDZ-LIM domain-containing protein 2 in colon cancer and its role as a potential therapeutic target. , 2010, Cancer research.

[27]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[28]  Umar Mahmood,et al.  Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment , 2010, Proceedings of the National Academy of Sciences.

[29]  S. Leach,et al.  Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas , 2009, Proceedings of the National Academy of Sciences.

[30]  S. Leach,et al.  Pancreatic ductal morphogenesis and the Pdx1 homeodomain transcription factor. , 2009, Molecular biology of the cell.

[31]  Calvin J Kuo,et al.  Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche , 2009, Nature Medicine.

[32]  Y. Asmann,et al.  A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer , 2009, Science.

[33]  M. Taketo,et al.  Mouse models of colon cancer. , 2009, Gastroenterology.

[34]  Winston Timp,et al.  A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction , 2009, Cell cycle.

[35]  K. Stankunas,et al.  Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126 , 2008, Development.

[36]  Pablo Tamayo,et al.  CDK8 is a colorectal cancer oncogene that regulates β-catenin activity , 2008, Nature.

[37]  A. Sweet-Cordero,et al.  Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon , 2008, Nature Genetics.

[38]  Michael T. McManus,et al.  Unintentional miRNA Ablation Is a Risk Factor in Gene Knockout Studies: A Short Report , 2008, PLoS genetics.

[39]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[40]  W. Alexander,et al.  Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon , 2007, Oncogene.

[41]  R. Scharfmann,et al.  Control of β-Cell Differentiation by the Pancreatic Mesenchyme , 2007, Diabetes.

[42]  V. Stetsyuk,et al.  In vivo and in vitro techniques to study pancreas development and islet cell function. , 2007, Endocrine development.

[43]  R. Scharfmann,et al.  Control of beta-cell differentiation by the pancreatic mesenchyme. , 2007, Diabetes.

[44]  Julie A. Wilkins,et al.  Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo , 2006, Proceedings of the National Academy of Sciences.

[45]  S. Zaina,et al.  Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. , 2006, Cancer research.

[46]  S. Lowe,et al.  Probing tumor phenotypes using stable and regulated synthetic microRNA precursors , 2005, Nature Genetics.

[47]  Takashi Tanaka,et al.  SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. , 2005, Immunity.

[48]  R. Hruban,et al.  Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. , 2005, Cancer cell.

[49]  Daniel Metzger,et al.  Tissue‐specific and inducible Cre‐mediated recombination in the gut epithelium , 2004, Genesis.

[50]  A. Hassan,et al.  Insulin-like Growth Factor II Supply Modifies Growth of Intestinal Adenoma in ApcMin/+ Mice , 2000 .

[51]  A. Hassan,et al.  Insulin-like growth factor II supply modifies growth of intestinal adenoma in Apc(Min/+) mice. , 2000, Cancer research.

[52]  T. Noda,et al.  Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. , 1997, Science.

[53]  C. Graham,et al.  Disproportionate growth in mice with Igf-2 transgenes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[55]  A. Efstratiadis,et al.  A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting , 1990, Nature.

[56]  T B Boulton,et al.  The short report. , 1982, Annals of the Royal College of Surgeons of England.