Multi-start methods for combinatorial optimization

Multi-start methods strategically sample the solution space of an optimization problem. The most successful of these methods have two phases that are alternated for a certain number of global iterations. The first phase generates a solution and the second seeks to improve the outcome. Each global iteration produces a solution that is typically a local optimum, and the best overall solution is the output of the algorithm. The interaction between the two phases creates a balance between search diversification (structural variation) and search intensification (improvement), to yield an effective means for generating high-quality solutions. This survey briefly sketches historical developments that have motivated the field, and then focuses on modern contributions that define the current state-of-the-art. We consider two categories of multi-start methods: memory-based and memoryless procedures. The former are based on identifying and recording specific types of information (attributes) to exploit in future constructions. The latter are based on order statistics of sampling and generate unconnected solutions. An interplay between the features of these two categories provides an inviting area for future exploration.

[1]  Andrew B. Kahng,et al.  Combining problem reduction and adaptive multistart: a new technique for superior iterative partitioning , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  F. P. Wyman,et al.  Binary Programming: A Decision Rule for Selecting Optimal vs Heuristic Techniques , 1973, Comput. J..

[4]  Rafael Martí,et al.  GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization , 1999, INFORMS J. Comput..

[5]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[6]  Fred Glover,et al.  Multi-Start and Strategic Oscillation Methods - Principles to Exploit Adaptive Memory , 2000 .

[7]  Luca Maria Gambardella,et al.  Adaptive memory programming: A unified view of metaheuristics , 1998, Eur. J. Oper. Res..

[8]  Bruce A. McCarl,et al.  A HEURISTIC FOR GENERAL INTEGER PROGRAMMING , 1974 .

[9]  Francisco J. Rodríguez,et al.  Tabu search with strategic oscillation for the quadratic minimum spanning tree , 2014 .

[10]  El-Ghazali Talbi,et al.  Using the Multi-Start and Island Models for Parallel Multi-Objective Optimization on the Computational Grid , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[11]  Celso C. Ribeiro,et al.  TTT plots: a perl program to create time-to-target plots , 2007, Optim. Lett..

[12]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[13]  Habib Chabchoub,et al.  A multi‐start threshold accepting algorithm for multiple objective continuous optimization problems , 2010 .

[14]  Mauricio G. C. Resende,et al.  An Annotated Bibliography of Grasp Part Ii: Applications , 2022 .

[15]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[16]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[17]  Andrew W. Shogan,et al.  Semi-greedy heuristics: An empirical study , 1987 .

[18]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[19]  Mauricio G. C. Resende,et al.  An Annotated Bibliography of Grasp Part I: Algorithms , 2022 .

[20]  Ricardo P. Beausoleil,et al.  Multi-start and path relinking methods to deal with multiobjective knapsack problems , 2008, Ann. Oper. Res..

[21]  Michel Gendreau,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows , 1997, Transp. Sci..

[22]  Celso C. Ribeiro,et al.  Effective Probabilistic Stopping Rules for Randomized Metaheuristics: GRASP Implementations , 2011, LION.

[23]  J Potvin,et al.  A tabu search heuristic for the vehicle routing problem with time windows , 1992 .

[24]  Wout Dullaert,et al.  A multi-start local search algorithm for the vehicle routing problem with time windows , 2004, Eur. J. Oper. Res..

[25]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[26]  Mike Preuss,et al.  Experiments on metaheuristics: Methodological overview and open issues , 2007 .

[27]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[28]  Fred Glover,et al.  PROBABILISTIC AND PARAMETRIC LEARNING COMBINATIONS OF LOCAL JOB SHOP SCHEDULING RULES , 1963 .

[29]  Alexandre Dolgui,et al.  Balancing lines with CNC machines: A multi-start ant based heuristic , 2010 .

[30]  Mauricio G. C. Resende,et al.  A Hybrid Heuristic for the p-Median Problem , 2004, J. Heuristics.

[31]  Erik Rolland,et al.  A Memory Adaptive Reasoning Technique for Solving the Capacitated Minimum Spanning Tree Problem , 1999, J. Heuristics.

[32]  Nubia Velasco,et al.  GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots , 2010, Eng. Appl. Artif. Intell..

[33]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[34]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[35]  Celso C. Ribeiro,et al.  Restart strategies for GRASP with path-relinking heuristics , 2011, Optim. Lett..

[36]  Guanghui Lan,et al.  On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the Set Covering Problem , 2006, Comput. Ind. Eng..

[37]  Irène Charon,et al.  The Noising Methods: A Survey , 2002 .

[38]  Fred Glover,et al.  Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory , 1999, INFORMS J. Comput..

[39]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[40]  Celso C. Ribeiro,et al.  Path-relinking intensification methods for stochastic local search algorithms , 2012, J. Heuristics.

[41]  M. Resende,et al.  Greedy Randomized Adaptive Search Procedures. , 2003 .

[42]  Micael Gallego,et al.  GRASP and path relinking for the max-min diversity problem , 2010, Comput. Oper. Res..

[43]  Celso C. Ribeiro,et al.  Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms , 2012, J. Glob. Optim..

[44]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..