Compact Circuit Model and Hardware Emulation for Floating Memristor Devices

A compact circuit model and physical hardware emulation for floating memristors are presented. By utilizing memristor 'resistance' as a state variable, and constructing a hardware emulator using a low-complexity modular structure, the model-based emulation can replicate diverse behaviors of different device types. Our hardware emulator for a voltage-actuated, threshold sensitive, two-terminal, floating memristor demonstrates experimentally memristor dynamics. The emulator is capable of computing any arithmetic operations without any disturbance associated with composition of modular structures.

[1]  Kyoung-Rok Cho,et al.  Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  Leon O. Chua,et al.  Memristor Emulator for Memristor Circuit Applications , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[4]  Kyeong-Sik Min,et al.  SPICE macromodel and CMOS emulator for memristors. , 2012, Journal of nanoscience and nanotechnology.

[5]  Sangho Shin,et al.  Neuronal spike event generation by memristors , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[6]  H. Iu,et al.  Design of a memcapacitor emulator based on a memristor , 2012 .

[7]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[8]  Siddharth Gaba,et al.  Synaptic behaviors and modeling of a metal oxide memristive device , 2011 .

[9]  Sangho Shin,et al.  Energy-Efficient Memristive Analog and Digital Electronics , 2012 .

[10]  Sung-Mo Kang,et al.  Data-Dependent Statistical Memory Model for Passive Array of Memristive Devices , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  R. Waser,et al.  A Novel Reference Scheme for Reading Passive Resistive Crossbar Memories , 2006, IEEE Transactions on Nanotechnology.

[12]  Massimiliano Di Ventra,et al.  Memristive model of amoeba’s learning , 2008 .

[13]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[14]  Fernando Corinto,et al.  A Boundary Condition-Based Approach to the Modeling of Memristor Nanostructures , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[16]  Sung-Mo Kang,et al.  Reconfigurable Stateful nor Gate for Large-Scale Logic-Array Integrations , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Massimiliano Di Ventra,et al.  Emulation of floating memcapacitors and meminductors using current conveyors , 2011 .

[18]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[19]  T. Roska,et al.  Memristor bridge circuit for neural synaptic weighting , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[20]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[21]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[22]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[23]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[24]  Jason Cong,et al.  mrFPGA: A novel FPGA architecture with memristor-based reconfiguration , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[25]  M. Pickett,et al.  A memristor-based nonvolatile latch circuit , 2010, Nanotechnology.

[26]  Sung-Mo Kang,et al.  Analysis of Passive Memristive Devices Array: Data-Dependent Statistical Model and Self-Adaptable Sense Resistance for RRAMs , 2012, Proceedings of the IEEE.

[27]  Robinson E. Pino,et al.  Computational Intelligence and Neuromorphic Computing Architectures , 2012 .

[28]  Sung-Mo Kang,et al.  Stateful logic pipeline architecture , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[29]  M. Liu,et al.  Application of nanojunction-based RRAM to reconfigurable IC , 2008 .

[30]  Sung-Mo Kang,et al.  Field Programmable Stateful Logic Array , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[31]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[32]  K. Eshraghian,et al.  The fourth element: characteristics, modelling and electromagnetic theory of the memristor , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  C. Toumazou,et al.  A Versatile Memristor Model With Nonlinear Dopant Kinetics , 2011, IEEE Transactions on Electron Devices.

[34]  D. Batas,et al.  A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling , 2011, IEEE Transactions on Nanotechnology.

[35]  Changju Yang,et al.  Memristor emulator with off-the-shelf solid state components for memristor application circuits , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[36]  Sung-Mo Kang,et al.  Memristive computing- multiplication and correlation , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[37]  Sung-Mo Kang,et al.  Resistive Computing: Memristors-Enabled Signal Multiplication , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Sung-Mo Kang,et al.  Memristive XOR for resistive multiplier , 2012 .

[39]  Blaise Mouttet,et al.  Proposal for Memristors in Signal Processing , 2008, NanoNet.

[40]  Jeyavijayan Rajendran,et al.  An Energy-Efficient Memristive Threshold Logic Circuit , 2012, IEEE Transactions on Computers.

[41]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[42]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[43]  Dalibor Biolek,et al.  PSPICE modeling of meminductor , 2011 .

[44]  Kyungmin Kim,et al.  Memristor-based fine resolution programmable resistance and its applications , 2009, 2009 International Conference on Communications, Circuits and Systems.

[45]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[46]  L. Chua Memristor-The missing circuit element , 1971 .

[47]  Sung-Mo Kang,et al.  Complementary structure of memristive devices based passive memory arrays , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[48]  G. Subramanyam,et al.  A Memristor Device Model , 2011, IEEE Electron Device Letters.

[49]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[50]  Massimiliano Di Ventra,et al.  Teaching Memory Circuit Elements via Experiment-Based Learning , 2011, IEEE Circuits and Systems Magazine.