Orientation Covariant Aggregation of Local Descriptors with Embeddings

Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently.

[1]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[2]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[4]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[5]  Cristian Sminchisescu,et al.  Semantic Segmentation with Second-Order Pooling , 2012, ECCV.

[6]  Krystian Mikolajczyk,et al.  Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection , 2013, Comput. Vis. Image Underst..

[7]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[8]  Patrick Pérez,et al.  Revisiting the VLAD image representation , 2013, ACM Multimedia.

[9]  Georges Quénot,et al.  Descriptor optimization for multimedia indexing and retrieval , 2013, Multimedia Tools and Applications.

[10]  Cordelia Schmid,et al.  Evaluation of GIST descriptors for web-scale image search , 2009, CIVR '09.

[11]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Guillaume Gravier,et al.  Oriented pooling for dense and non-dense rotation-invariant features , 2013, BMVC.

[14]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[15]  Andrew Zisserman,et al.  Efficient additive kernels via explicit feature maps , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  David Picard,et al.  Efficient image signatures and similarities using tensor products of local descriptors , 2013, Comput. Vis. Image Underst..

[17]  Yannis Avrithis,et al.  To Aggregate or Not to aggregate: Selective Match Kernels for Image Search , 2013, 2013 IEEE International Conference on Computer Vision.

[18]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Dieter Fox,et al.  Kernel Descriptors for Visual Recognition , 2010, NIPS.

[20]  Cristian Sminchisescu,et al.  Fourier Kernel Learning , 2012, ECCV.

[21]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[22]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  Matthijs Douze,et al.  The Yael Library , 2014, ACM Multimedia.

[26]  Jiri Matas,et al.  Efficient representation of local geometry for large scale object retrieval , 2009, CVPR.

[27]  Cristian Sminchisescu,et al.  Efficient Match Kernel between Sets of Features for Visual Recognition , 2009, NIPS.

[28]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[29]  Andrew Zisserman,et al.  All About VLAD , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Jiri Matas,et al.  Learning a Fine Vocabulary , 2010, ECCV.

[31]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[32]  Moses Charikar,et al.  Similarity estimation techniques from rounding algorithms , 2002, STOC '02.

[33]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[34]  Florent Perronnin,et al.  Large-scale image retrieval with compressed Fisher vectors , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Masatoshi Okutomi,et al.  Visual Place Recognition with Repetitive Structures , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[37]  Michael Isard,et al.  Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[39]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[40]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[41]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[42]  Hervé Jégou,et al.  Negative Evidences and Co-occurences in Image Retrieval: The Benefit of PCA and Whitening , 2012, ECCV.

[43]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[44]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[45]  C. Schmid,et al.  On the burstiness of visual elements , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[47]  Dieter Fox,et al.  Depth kernel descriptors for object recognition , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.