Leibniz rule and fractional derivatives of power functions

In this paper, we prove that unviolated simple Leibniz rule and equation for fractional-order derivative of power function cannot hold together for derivatives of orders α≠1. To prove this statement, we use an algebraic approach, where special form of fractional-order derivatives is not applied.

[1]  G. Jumarie RIEMANN-CHRISTOFFEL TENSOR IN DIFFERENTIAL GEOMETRY OF FRACTIONAL ORDER APPLICATION TO FRACTAL SPACE-TIME , 2013 .

[2]  Oksana Mont,et al.  Throwing out the baby with the bath water? A critical review of the EU Communication on IPP , 2004 .

[3]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[4]  Kiran M. Kolwankar,et al.  Local Fractional Calculus: a Review , 2013, 1307.0739.

[5]  G. Jumarie The Leibniz Rule for Fractional Derivatives Holds with Non-Differentiable Functions , 2013 .

[6]  Guy Jumarie,et al.  From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series , 2009 .

[7]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[8]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[9]  A. Gómez A NOTE ON THE EXACT SOLUTION FOR THE FRACTIONAL BURGERS EQUATION , 2014 .

[10]  Guy Jumarie,et al.  On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling , 2013 .

[11]  J E Thompson,et al.  Don't throw out the baby with the bath water: A perspective on carotid endarterectomy , 1986 .

[12]  B. Zheng,et al.  Exact solutions for fractional partial differential equations by a new fractional sub-equation method , 2013, Advances in Difference Equations.

[13]  Thomas J. Osler,et al.  A Correction to Leibniz Rule for Fractional Derivatives , 1973 .

[14]  J. Weberszpil Validity of the fractional Leibniz rule on a coarse-grained medium yields a modied fractional chain rule , 2014, 1405.4581.

[15]  Thomas J. Osler,et al.  A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .

[16]  J. Weberszpil,et al.  Anomalous g-Factors for Charged Leptons in a Fractional Coarse-Grained Approach , 2013, 1306.5314.

[17]  Vasily E. Tarasov,et al.  Quantum Mechanics of Non-Hamiltonian and Dissipative Systems , 2008 .

[18]  Guy Jumarie,et al.  The Minkowski's space-time is consistent with differential geometry of fractional order , 2007 .

[19]  M. Rivero,et al.  Fractional calculus: A survey of useful formulas , 2013, The European Physical Journal Special Topics.

[20]  Delfim F. M. Torres,et al.  Fractional variational calculus for nondifferentiable functions , 2011, Comput. Math. Appl..

[21]  I. Podlubny Fractional differential equations , 1998 .

[22]  Thomas J. Osler,et al.  Fractional Derivatives and Leibniz Rule , 1971 .

[23]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[24]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[25]  Vasily E. Tarasov,et al.  No violation of the Leibniz rule. No fractional derivative , 2013, Commun. Nonlinear Sci. Numer. Simul..

[26]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[27]  J. Liouville Mémoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. , 1835 .

[28]  Vasily E. Tarasov,et al.  On chain rule for fractional derivatives , 2016, Commun. Nonlinear Sci. Numer. Simul..

[29]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[30]  Guy Jumarie,et al.  Oscillation of Non-Linear Systems Close to Equilibrium Position in the Presence of Coarse-Graining in Time and Space , 2009 .

[31]  Guy Jumarie,et al.  An approach via fractional analysis to non-linearity induced by coarse-graining in space , 2010 .

[32]  Cheng-shi Liu,et al.  Counterexamples on Jumarie's two basic fractional calculus formulae , 2015, Commun. Nonlinear Sci. Numer. Simul..

[33]  Cresus F. L. Godinho,et al.  Extending the D’alembert solution to space–time Modified Riemann–Liouville fractional wave equations , 2012 .

[34]  Guy Jumarie,et al.  Probability calculus of fractional order and fractional Taylor's series application to Fokker-Planck equation and information of non-random functions , 2009 .

[35]  Jacky Cresson,et al.  About Non-differentiable Functions , 2001 .

[36]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[37]  Vasily E. Tarasov,et al.  Local Fractional Derivatives of Differentiable Functions are Integer-order Derivatives or Zero , 2016, 1701.06300.

[38]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[39]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[41]  Xiong Wang On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions , 2014 .

[42]  Dumitru Baleanu,et al.  On Caputo modification of the Hadamard fractional derivatives , 2014, Advances in Difference Equations.

[43]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[44]  José António Tenreiro Machado,et al.  On development of fractional calculus during the last fifty years , 2013, Scientometrics.

[45]  V. E. Tarasov Comments on “The Minkowski's space–time is consistent with differential geometry of fractional order” [Phys. Lett. A 363 (2007) 5–11] , 2015 .

[46]  Kiran M. Kolwankar,et al.  Hölder exponents of irregular signals and local fractional derivatives , 1997, chao-dyn/9711010.

[47]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[48]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .