Probabilistic Solution of Ill-Posed Problems in Computational Vision

We formulate several problems in early vision as inverse problems. Among the solution methods we review standard regularization theory, discuss its limitations, and present new stochastic (in particular, Bayesian) techniques based on Markov Random Field models for their solution. We derive efficient algorithms and describe parallel implementations on digital parallel SIMD architectures, as well as a new class of parallel hybrid computers that mix digital with analog components.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[5]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[6]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[7]  E. Wong Two-Dimensional Random Fields and Representation of Images , 1968 .

[8]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[9]  John W. Woods,et al.  Two-dimensional discrete Markovian fields , 1972, IEEE Trans. Inf. Theory.

[10]  A. Habibi Two-dimensional Bayesian estimate of images , 1972 .

[11]  N. Nahi,et al.  Bayesian recursive image estimation. , 1972 .

[12]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  Harry G. Barrow,et al.  Interpreting Line Drawings as Three-Dimensional Surfaces , 1980, Artif. Intell..

[15]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[16]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[17]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Comput. Graph. Image Process..

[18]  F. R. Hansen,et al.  Image segmentation using simple Markov field models , 1982, ICASSP.

[19]  W E Grimson,et al.  A computational theory of visual surface interpolation. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Michael Brady,et al.  Computational Approaches to Image Understanding , 1982, CSUR.

[21]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  C M Brown,et al.  Computer Vision and Natural Constraints , 1984, Science.

[24]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Donald Geman,et al.  Application of the Gibbs distribution to image segmentation , 1984, ICASSP.

[26]  T. Poggio,et al.  Ill-Posed Problems and Regularization Analysis in Early Vision , 1984 .

[27]  T. Poggio Vision by man and machine. , 1984, Scientific American.

[28]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[29]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .

[30]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[31]  José L. Marroquín,et al.  Probabilistic solution of inverse problems , 1985 .

[32]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[33]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[34]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.