Petrogenesis of the Paleoproterozoic (Orosirian) A-type granites of Carajás Province, Amazon Craton, Brazil: Combined in situ Hf O isotopes of zircon

[1]  Mayara Fraeda Barbosa Teixeira,et al.  Geologia, petrografia e geoquímica do Leucogranodiorito Pantanal e dos leucogranitos arqueanos da área a norte de Sapucaia, Província Carajás, Pará: implicações petrogenéticas , 2021, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.

[2]  R. Dall'agnol,et al.  Geologia, petrografia e geoquímica de Associações Tonalíticas e Trondhjemíticas Arqueanas de Vila Jussara, Província Carajás, Pará , 2021, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.

[3]  Eleilson Oliveira Gabriel Geologia, petrografia e geoquímica dos granitoides arqueanos de alto magnésio da região de Água Azul do Norte, porção sul do Domínio Carajás, Pará , 2021, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.

[4]  M. Hamilton,et al.  U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio Maria and Rio Apa areas): Tectonic implications for events at 1880, 1110 Ma, 535 Ma and 200 Ma , 2019, Precambrian Research.

[5]  R. Dall’Agnol,et al.  Crystallization ages of Paleoproterozoic A-type granites of Carajás province, Amazon craton: Constraints from U-Pb geochronology of zircon and titanite , 2018, Journal of South American Earth Sciences.

[6]  R. Dall’Agnol,et al.  Mineral chemistry and crystallization parameters of the A-type Paleoproterozoic Bannach Granite, Carajás Province, Pará, Brazil , 2018, Brazilian Journal of Geology.

[7]  M. Macambira,et al.  1.88 Ga São Gabriel AMCG association in the southernmost Uatumã-Anauá Domain: Petrological implications for post-collisional A-type magmatism in the Amazonian Craton , 2018 .

[8]  R. Dall’Agnol,et al.  Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil , 2017 .

[9]  Catarina Labouré Bemfica Toledo,et al.  Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: Petrography, geochemistry and tectonic significance of basalts from the Carajás Basin , 2017 .

[10]  A. Nédélec,et al.  Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian craton , 2017 .

[11]  P. Kaur,et al.  Two distinct sources of 1.73–1.70 Ga A-type granites from the northern Aravalli orogen, NW India: Constraints from in situ zircon U-Pb ages and Lu-Hf isotopes , 2017 .

[12]  R. Dall’Agnol,et al.  Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated with charnockites , 2017 .

[13]  C. Lamarão,et al.  Bimodal magmatism of the Tucumã area, Carajás province: U-Pb geochronology, classification and processes , 2016 .

[14]  M. Macambira,et al.  Petrography, geochemistry and Sm-Nd isotopes of the granites from eastern of the Tapajós Domain, Pará state , 2016 .

[15]  L. Monteiro,et al.  Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance , 2016 .

[16]  S. Kroonenberg,et al.  Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model , 2016, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[17]  J. Vervoort,et al.  Clarifying the zircon Hf isotope record of crust–mantle evolution , 2016 .

[18]  D. McInerney,et al.  Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth , 2016 .

[19]  R. Dall’Agnol,et al.  Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajás Province - Amazonian Craton: Implications for the evolution of ferroan Archean granites , 2016 .

[20]  J. Vander Auwera,et al.  The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes , 2016, International Journal of Earth Sciences.

[21]  T. Andersen,et al.  Geochemistry and petrogenesis of Mesoproterozoic A-type granitoids from the Danish island of Bornholm, southern Fennoscandia , 2016 .

[22]  L. Monteiro,et al.  Timing of multiple hydrothermal events in the iron oxide–copper–gold deposits of the Southern Copper Belt, Carajás Province, Brazil , 2015, Mineralium Deposita.

[23]  N. Roberts,et al.  The zircon archive of continent formation through time , 2014 .

[24]  E. F. Lima,et al.  Palaeoproterozoic (~1.89 Ga) felsic volcanism of the Iricoumé Group, Guyana Shield, South America: geochemical and Sm-Nd isotopic constraints on sources and tectonic environment , 2014 .

[25]  Z. Ding,et al.  Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust , 2014 .

[26]  C. Fisher,et al.  Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method , 2014 .

[27]  Xilin Zhao,et al.  Geochronology, geochemistry and petrogenesis of the late Palaeoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: implications for the break-up of the Columbia supercontinent , 2013, Geological Magazine.

[28]  P. H. Lima Geologia, petrografia e geoquímica e suscetibilidade magnética do Granito Paleoproterozoico São João, Sudeste do Cráton Amazônico, Província Carajás , 2013 .

[29]  R. Dall’Agnol,et al.  Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil , 2013 .

[30]  R. Dall’Agnol,et al.  Geochemistry and petrogenesis of the Mesoarchean granites from the Canaã dos Carajás area, Carajás Province, Brazil: Implications for the origin of Archean granites , 2012 .

[31]  R. Dall’Agnol,et al.  IGCP Project 510 “A-type Granites and Related Rocks through Time”: Project vita, results, and contribution to granite research , 2012 .

[32]  R. Dall’Agnol,et al.  Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton — Geochemical, U–Pb geochronological, and Nd–Hf–O isotopic constraints , 2012 .

[33]  C. Lamarão,et al.  Mineralogy and geochemistry of the Paleoproterozoic, tin-mineralized Bom Jardim granite of the Velho Guilherme Suite, eastern Amazonian craton , 2012 .

[34]  Peter A. Cawood,et al.  A Change in the Geodynamics of Continental Growth 3 Billion Years Ago , 2012, Science.

[35]  B. D. B. Neves The Paleoproterozoic in the South-American continent: Diversity in the geologic time , 2011 .

[36]  M. Zhai,et al.  Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton , 2011 .

[37]  C. Lamarão,et al.  Geology, Petrography and Geochemistry of the Seringa Batholith, Carajás Province, SSE of the Pará , 2011 .

[38]  M. Whitehouse,et al.  In-situ zircon U–Pb, oxygen and hafnium isotopic evidence for magma mixing and mantle metasomatism in the Tuscan Magmatic Province, Italy , 2011 .

[39]  R. Aster,et al.  Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust , 2011 .

[40]  M. Oliveira,et al.  Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: Implications for the growth of the Archean crust of the Carajás province, Brazil , 2011 .

[41]  Peter A. Cawood,et al.  When Continents Formed , 2011, Science.

[42]  R. Dall’Agnol,et al.  Magnetic anisotropy of the Redenção granite, eastern Amazonian craton (Brazil): Implications for the emplacement of A-type plutons , 2010 .

[43]  J. Blichert‐Toft,et al.  Depleted mantle sources through time: Evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites , 2010 .

[44]  T. Andersen,et al.  Re-evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland , 2010 .

[45]  C. Juliani,et al.  Well-preserved Late Paleoproterozoic volcanic centers in the São Félix do Xingu region, Amazonian Craton, Brazil , 2010 .

[46]  Peter A. Cawood,et al.  The generation and evolution of the continental crust , 2010, Journal of the Geological Society.

[47]  R. Dall’Agnol,et al.  THE MESOPROTEROZOIC MUCAJAÍ ANORTHOSITE – MANGERITE – RAPAKIVI GRANITE COMPLEX, AMAZONIAN CRATON, BRAZIL , 2009 .

[48]  M. Oliveira,et al.  GEOLOGY, GEOCHEMISTRY AND MAGMATIC EVOLUTION OF THE PALEOPROTEROZOIC, ANOROGENIC OXIDIZED A-TYPE REDENÇÃO GRANITE OF THE JAMON SUITE, EASTERN AMAZONIAN CRATON, BRAZIL , 2009 .

[49]  Mei Zhou,et al.  Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton , 2009 .

[50]  C. M. Gray,et al.  Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia , 2009 .

[51]  J. Valley,et al.  High precision SIMS oxygen isotope analysis and the effect of sample topography , 2009 .

[52]  W. Teixeira,et al.  The position of the Amazonian Craton in supercontinents , 2009 .

[53]  M. Santosh,et al.  Tectonics and surface effects of the supercontinent Columbia , 2009 .

[54]  T. Andersen,et al.  Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon , 2009, Journal of the Geological Society.

[55]  W. Bleeker,et al.  Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slave craton, Canada , 2008 .

[56]  J. Miller,et al.  Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS , 2008 .

[57]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[58]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[59]  M. Macambira,et al.  Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian craton, Brazil: Neoarchean to Orosirian evolution , 2008 .

[60]  R. Dall’Agnol,et al.  Gravimetric, radiometric, and magnetic susceptibility study of the Paleoproterozoic Redencao and Bannach plutons, eastern Amazonian Craton, Brazil: Implications for architecture and zoning of A-type granites , 2008 .

[61]  B. Bonin A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .

[62]  K. Mezger,et al.  Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages , 2007 .

[63]  Yue Zhao,et al.  The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen , 2007 .

[64]  C. M. Gray,et al.  Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.

[65]  R. Dall’Agnol,et al.  Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .

[66]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[67]  J. Vervoort,et al.  Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence , 2006 .

[68]  C. Hawkesworth,et al.  Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution , 2006 .

[69]  M. Basei,et al.  4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .

[70]  T. Hirata,et al.  Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique , 2005 .

[71]  J. Woodhead,et al.  A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination , 2005 .

[72]  R. Dall’Agnol,et al.  Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .

[73]  J. Morrison,et al.  Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica , 2005 .

[74]  R. Dall’Agnol,et al.  Nd isotopic composition of Paleoproterozoic volcanic and granitoid rocks of Vila Riozinho: implications for the crustal evolution of the Tapajós gold province, Amazon craton , 2005 .

[75]  J. Vervoort,et al.  Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC‐ICPMS , 2004 .

[76]  S. Eggins,et al.  Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation , 2004 .

[77]  D. Groves,et al.  Timing and evolution of multiple Paleoproterozoic magmatic arcs in the Tapajós Domain, Amazon Craton: constraints from SHRIMP and TIMS zircon, baddeleyite and titanite U-Pb geochronology , 2004 .

[78]  W. Griffin,et al.  Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield ☆ , 2004 .

[79]  L. Halicz,et al.  Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure , 2003 .

[80]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[81]  R. Maas,et al.  Lu–Hf and Sm–Nd isotope systems in zircon , 2003 .

[82]  J. Valley Oxygen Isotopes in Zircon , 2003 .

[83]  R. Dall’Agnol,et al.  Archean crustal sources for Paleoproterozoic tin-mineralized granites in the Carajás Province, SSE Pará, Brazil: Pb-Pb geochronology and Nd isotope geochemistry , 2002 .

[84]  R. Dall’Agnol,et al.  Geology, geochemistry, and Pb–Pb zircon geochronology of the Paleoproterozoic magmatism of Vila Riozinho, Tapajós Gold Province, Amazonian craton, Brazil , 2002 .

[85]  C. German,et al.  Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections , 2002 .

[86]  W. Griffin,et al.  Crustal Evolution in the SW Part of the Baltic Shield: the Hf Isotope Evidence , 2002 .

[87]  R. Dall’Agnol,et al.  1.88 Ga Oxidized A‐Type Granites of the Rio Maria Region, Eastern Amazonian Craton, Brazil: Positively Anorogenic! , 2002, The Journal of Geology.

[88]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[89]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[90]  D. Groves,et al.  A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology , 2000 .

[91]  Pimentel,et al.  The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. , 2000, Anais da Academia Brasileira de Ciencias.

[92]  R. Dall’Agnol,et al.  An Experimental Study of a Lower Proterozoic A-type Granite from theEastern Amazonian Craton, Brazil , 1999 .

[93]  N. P. Teixeira Contribuição ao estudo das rochas granitóides e mineralizações associadas da Suite Intrusiva Velho Guilherme, Província Estanífera do Sul do Pará , 1999 .

[94]  R. Dall’Agnol,et al.  Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites , 1999 .

[95]  J. Blichert‐Toft,et al.  Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time , 1999 .

[96]  J. Valley,et al.  Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts , 1998 .

[97]  B. Frost,et al.  Reduced rapakivi-type granites: The tholeiite connection , 1997 .

[98]  O. Rämö,et al.  One hundred years of rapakivi granite , 1995 .

[99]  J. Chiarenzelli,et al.  Oxygen isotope geochemistry of zircon , 1994 .

[100]  R. Dall’Agnol,et al.  Proterozoic anorogenic magmatism in the Central Amazonian Province, amazonian araton: Geochronological, petrological and geochemical aspects , 1994 .

[101]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[102]  D. Lindsley,et al.  Occurrence of iron-titanium oxides in igneous rocks , 1991 .

[103]  R. F. Emslie Granitoids of rapakivi granite-anorthosite and related associations , 1991 .

[104]  R. Creaser,et al.  A-type granites revisited: Assessment of a residual-source model , 1991 .

[105]  Z. Lindenmayer,et al.  U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil , 1991 .

[106]  J. Anderson,et al.  Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America , 1989 .

[107]  S. Goldstein,et al.  Use and abuse of crust-formation ages , 1987 .

[108]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[109]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[110]  W. Collins,et al.  Nature and origin of A-type granites with particular reference to southeastern Australia , 1982 .

[111]  D. DePaolo A neodymium and strontium isotopic study of the Mesozoic calc‐alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California , 1981 .

[112]  M. Loiselle,et al.  Characteristics and origin of anorogenic granites , 1979 .

[113]  R. F. Emslie Anorthosite massifs, rapakivi granites, and late proterozoic rifting of north America , 1978 .

[114]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[115]  P. Baertschi Absolute18O content of standard mean ocean water , 1976 .

[116]  Alfred Harker,et al.  The Natural History of Igneous Rocks , 2009 .

[117]  Patrick Araujo dos Santos Geologia, petrologia e geoquímica da associação tonalito-trondhjemito-granodiorito (TTG) do extremo leste do subdomínio de transição, província Carajás , 2014 .

[118]  B. Frost,et al.  On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin , 2011 .

[119]  P. Lima,et al.  Geologia, Petrografia e Geoquímica do Batólito Seringa, Província Carajás, SSE do Pará , 2011 .

[120]  I. Bindeman Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis , 2008 .

[121]  J. Lafon,et al.  Datação Sm-Nd em rocha total e granada do metamorfismo granulítico da região de Tartarugal Grande, Amapá Central , 2008 .

[122]  A. Müller Rapakivi granites , 2007 .

[123]  R. WoNBs Significance of the assemblage titanite * magnetite * quartz in granitic rocks , 2007 .

[124]  R. Dall'agnol,et al.  GEOLOGIA, PETROGRAFIA E GEOQUÍMICA DO GRANITO ANOROGÊNICO BANNACH, TERRENO GRANITO-GREENSTONE DE RIO MARIA, PARÁ , 2006 .

[125]  D. Groves,et al.  Geology and SHRIMP U-Pb Geochronology of the Igarapé Bahia Deposit, Carajás Copper-Gold Belt, Brazil: An Archean (2.57 Ga) Example of Iron-Oxide Cu-Au-(U-REE) Mineralization , 2005 .

[126]  Jorge Silva Bettencourt,et al.  Geoquímica dos granitos paleoproterozóicos da Suíte Granítica Velho Guilherme, Província Estanífera do Sul do Pará , 2005 .

[127]  M. Santosh,et al.  Configuration of Columbia, a Mesoproterozoic Supercontinent , 2002 .

[128]  R. N. Villas,et al.  O GRANITO SERRA DOS CARAJÁS: l. FÁCIES PETROGRÁFICAS E AVALIAÇÃO DO POTENCIAL METALOGENÉTICO PARA ESTANHO NO SETOR NORTE , 1995 .

[129]  P. Hoffman,et al.  United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia , 1988 .

[130]  J. D. Cr-nlrnNs Origin of an A-type granite: Experimental constraints , 1986 .

[131]  C. Hedge,et al.  Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes , 1982 .

[132]  S. Ishihara The granitoid series and mineralization , 1981 .