Petrogenesis of the Paleoproterozoic (Orosirian) A-type granites of Carajás Province, Amazon Craton, Brazil: Combined in situ Hf O isotopes of zircon
暂无分享,去创建一个
R. Dall’Agnol | A. Kemp | N. Evans | J. Santos | M. Teixeira
[1] Mayara Fraeda Barbosa Teixeira,et al. Geologia, petrografia e geoquímica do Leucogranodiorito Pantanal e dos leucogranitos arqueanos da área a norte de Sapucaia, Província Carajás, Pará: implicações petrogenéticas , 2021, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.
[2] R. Dall'agnol,et al. Geologia, petrografia e geoquímica de Associações Tonalíticas e Trondhjemíticas Arqueanas de Vila Jussara, Província Carajás, Pará , 2021, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.
[3] Eleilson Oliveira Gabriel. Geologia, petrografia e geoquímica dos granitoides arqueanos de alto magnésio da região de Água Azul do Norte, porção sul do Domínio Carajás, Pará , 2021, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.
[4] M. Hamilton,et al. U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio Maria and Rio Apa areas): Tectonic implications for events at 1880, 1110 Ma, 535 Ma and 200 Ma , 2019, Precambrian Research.
[5] R. Dall’Agnol,et al. Crystallization ages of Paleoproterozoic A-type granites of Carajás province, Amazon craton: Constraints from U-Pb geochronology of zircon and titanite , 2018, Journal of South American Earth Sciences.
[6] R. Dall’Agnol,et al. Mineral chemistry and crystallization parameters of the A-type Paleoproterozoic Bannach Granite, Carajás Province, Pará, Brazil , 2018, Brazilian Journal of Geology.
[7] M. Macambira,et al. 1.88 Ga São Gabriel AMCG association in the southernmost Uatumã-Anauá Domain: Petrological implications for post-collisional A-type magmatism in the Amazonian Craton , 2018 .
[8] R. Dall’Agnol,et al. Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil , 2017 .
[9] Catarina Labouré Bemfica Toledo,et al. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: Petrography, geochemistry and tectonic significance of basalts from the Carajás Basin , 2017 .
[10] A. Nédélec,et al. Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian craton , 2017 .
[11] P. Kaur,et al. Two distinct sources of 1.73–1.70 Ga A-type granites from the northern Aravalli orogen, NW India: Constraints from in situ zircon U-Pb ages and Lu-Hf isotopes , 2017 .
[12] R. Dall’Agnol,et al. Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton: The origin of hydrated granites associated with charnockites , 2017 .
[13] C. Lamarão,et al. Bimodal magmatism of the Tucumã area, Carajás province: U-Pb geochronology, classification and processes , 2016 .
[14] M. Macambira,et al. Petrography, geochemistry and Sm-Nd isotopes of the granites from eastern of the Tapajós Domain, Pará state , 2016 .
[15] L. Monteiro,et al. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance , 2016 .
[16] S. Kroonenberg,et al. Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model , 2016, Netherlands Journal of Geosciences - Geologie en Mijnbouw.
[17] J. Vervoort,et al. Clarifying the zircon Hf isotope record of crust–mantle evolution , 2016 .
[18] D. McInerney,et al. Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth , 2016 .
[19] R. Dall’Agnol,et al. Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajás Province - Amazonian Craton: Implications for the evolution of ferroan Archean granites , 2016 .
[20] J. Vander Auwera,et al. The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes , 2016, International Journal of Earth Sciences.
[21] T. Andersen,et al. Geochemistry and petrogenesis of Mesoproterozoic A-type granitoids from the Danish island of Bornholm, southern Fennoscandia , 2016 .
[22] L. Monteiro,et al. Timing of multiple hydrothermal events in the iron oxide–copper–gold deposits of the Southern Copper Belt, Carajás Province, Brazil , 2015, Mineralium Deposita.
[23] N. Roberts,et al. The zircon archive of continent formation through time , 2014 .
[24] E. F. Lima,et al. Palaeoproterozoic (~1.89 Ga) felsic volcanism of the Iricoumé Group, Guyana Shield, South America: geochemical and Sm-Nd isotopic constraints on sources and tectonic environment , 2014 .
[25] Z. Ding,et al. Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust , 2014 .
[26] C. Fisher,et al. Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method , 2014 .
[27] Xilin Zhao,et al. Geochronology, geochemistry and petrogenesis of the late Palaeoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: implications for the break-up of the Columbia supercontinent , 2013, Geological Magazine.
[28] P. H. Lima. Geologia, petrografia e geoquímica e suscetibilidade magnética do Granito Paleoproterozoico São João, Sudeste do Cráton Amazônico, Província Carajás , 2013 .
[29] R. Dall’Agnol,et al. Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil , 2013 .
[30] R. Dall’Agnol,et al. Geochemistry and petrogenesis of the Mesoarchean granites from the Canaã dos Carajás area, Carajás Province, Brazil: Implications for the origin of Archean granites , 2012 .
[31] R. Dall’Agnol,et al. IGCP Project 510 “A-type Granites and Related Rocks through Time”: Project vita, results, and contribution to granite research , 2012 .
[32] R. Dall’Agnol,et al. Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton — Geochemical, U–Pb geochronological, and Nd–Hf–O isotopic constraints , 2012 .
[33] C. Lamarão,et al. Mineralogy and geochemistry of the Paleoproterozoic, tin-mineralized Bom Jardim granite of the Velho Guilherme Suite, eastern Amazonian craton , 2012 .
[34] Peter A. Cawood,et al. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago , 2012, Science.
[35] B. D. B. Neves. The Paleoproterozoic in the South-American continent: Diversity in the geologic time , 2011 .
[36] M. Zhai,et al. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton , 2011 .
[37] C. Lamarão,et al. Geology, Petrography and Geochemistry of the Seringa Batholith, Carajás Province, SSE of the Pará , 2011 .
[38] M. Whitehouse,et al. In-situ zircon U–Pb, oxygen and hafnium isotopic evidence for magma mixing and mantle metasomatism in the Tuscan Magmatic Province, Italy , 2011 .
[39] R. Aster,et al. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust , 2011 .
[40] M. Oliveira,et al. Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: Implications for the growth of the Archean crust of the Carajás province, Brazil , 2011 .
[41] Peter A. Cawood,et al. When Continents Formed , 2011, Science.
[42] R. Dall’Agnol,et al. Magnetic anisotropy of the Redenção granite, eastern Amazonian craton (Brazil): Implications for the emplacement of A-type plutons , 2010 .
[43] J. Blichert‐Toft,et al. Depleted mantle sources through time: Evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites , 2010 .
[44] T. Andersen,et al. Re-evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland , 2010 .
[45] C. Juliani,et al. Well-preserved Late Paleoproterozoic volcanic centers in the São Félix do Xingu region, Amazonian Craton, Brazil , 2010 .
[46] Peter A. Cawood,et al. The generation and evolution of the continental crust , 2010, Journal of the Geological Society.
[47] R. Dall’Agnol,et al. THE MESOPROTEROZOIC MUCAJAÍ ANORTHOSITE – MANGERITE – RAPAKIVI GRANITE COMPLEX, AMAZONIAN CRATON, BRAZIL , 2009 .
[48] M. Oliveira,et al. GEOLOGY, GEOCHEMISTRY AND MAGMATIC EVOLUTION OF THE PALEOPROTEROZOIC, ANOROGENIC OXIDIZED A-TYPE REDENÇÃO GRANITE OF THE JAMON SUITE, EASTERN AMAZONIAN CRATON, BRAZIL , 2009 .
[49] Mei Zhou,et al. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton , 2009 .
[50] C. M. Gray,et al. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia , 2009 .
[51] J. Valley,et al. High precision SIMS oxygen isotope analysis and the effect of sample topography , 2009 .
[52] W. Teixeira,et al. The position of the Amazonian Craton in supercontinents , 2009 .
[53] M. Santosh,et al. Tectonics and surface effects of the supercontinent Columbia , 2009 .
[54] T. Andersen,et al. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon , 2009, Journal of the Geological Society.
[55] W. Bleeker,et al. Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slave craton, Canada , 2008 .
[56] J. Miller,et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS , 2008 .
[57] A. Bouvier,et al. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .
[58] M. Whitehouse,et al. Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .
[59] M. Macambira,et al. Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian craton, Brazil: Neoarchean to Orosirian evolution , 2008 .
[60] R. Dall’Agnol,et al. Gravimetric, radiometric, and magnetic susceptibility study of the Paleoproterozoic Redencao and Bannach plutons, eastern Amazonian Craton, Brazil: Implications for architecture and zoning of A-type granites , 2008 .
[61] B. Bonin. A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .
[62] K. Mezger,et al. Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages , 2007 .
[63] Yue Zhao,et al. The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen , 2007 .
[64] C. M. Gray,et al. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.
[65] R. Dall’Agnol,et al. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .
[66] Yue-heng Yang,et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .
[67] J. Vervoort,et al. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence , 2006 .
[68] C. Hawkesworth,et al. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution , 2006 .
[69] M. Basei,et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .
[70] T. Hirata,et al. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique , 2005 .
[71] J. Woodhead,et al. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination , 2005 .
[72] R. Dall’Agnol,et al. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .
[73] J. Morrison,et al. Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica , 2005 .
[74] R. Dall’Agnol,et al. Nd isotopic composition of Paleoproterozoic volcanic and granitoid rocks of Vila Riozinho: implications for the crustal evolution of the Tapajós gold province, Amazon craton , 2005 .
[75] J. Vervoort,et al. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC‐ICPMS , 2004 .
[76] S. Eggins,et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation , 2004 .
[77] D. Groves,et al. Timing and evolution of multiple Paleoproterozoic magmatic arcs in the Tapajós Domain, Amazon Craton: constraints from SHRIMP and TIMS zircon, baddeleyite and titanite U-Pb geochronology , 2004 .
[78] W. Griffin,et al. Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield ☆ , 2004 .
[79] L. Halicz,et al. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure , 2003 .
[80] C. Isachsen,et al. The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .
[81] R. Maas,et al. Lu–Hf and Sm–Nd isotope systems in zircon , 2003 .
[82] J. Valley. Oxygen Isotopes in Zircon , 2003 .
[83] R. Dall’Agnol,et al. Archean crustal sources for Paleoproterozoic tin-mineralized granites in the Carajás Province, SSE Pará, Brazil: Pb-Pb geochronology and Nd isotope geochemistry , 2002 .
[84] R. Dall’Agnol,et al. Geology, geochemistry, and Pb–Pb zircon geochronology of the Paleoproterozoic magmatism of Vila Riozinho, Tapajós Gold Province, Amazonian craton, Brazil , 2002 .
[85] C. German,et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections , 2002 .
[86] W. Griffin,et al. Crustal Evolution in the SW Part of the Baltic Shield: the Hf Isotope Evidence , 2002 .
[87] R. Dall’Agnol,et al. 1.88 Ga Oxidized A‐Type Granites of the Rio Maria Region, Eastern Amazonian Craton, Brazil: Positively Anorogenic! , 2002, The Journal of Geology.
[88] W. Griffin,et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .
[89] Calvin G. Barnes,et al. A Geochemical Classification for Granitic Rocks , 2001 .
[90] D. Groves,et al. A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology , 2000 .
[91] Pimentel,et al. The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. , 2000, Anais da Academia Brasileira de Ciencias.
[92] R. Dall’Agnol,et al. An Experimental Study of a Lower Proterozoic A-type Granite from theEastern Amazonian Craton, Brazil , 1999 .
[93] N. P. Teixeira. Contribuição ao estudo das rochas granitóides e mineralizações associadas da Suite Intrusiva Velho Guilherme, Província Estanífera do Sul do Pará , 1999 .
[94] R. Dall’Agnol,et al. Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites , 1999 .
[95] J. Blichert‐Toft,et al. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time , 1999 .
[96] J. Valley,et al. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts , 1998 .
[97] B. Frost,et al. Reduced rapakivi-type granites: The tholeiite connection , 1997 .
[98] O. Rämö,et al. One hundred years of rapakivi granite , 1995 .
[99] J. Chiarenzelli,et al. Oxygen isotope geochemistry of zircon , 1994 .
[100] R. Dall’Agnol,et al. Proterozoic anorogenic magmatism in the Central Amazonian Province, amazonian araton: Geochronological, petrological and geochemical aspects , 1994 .
[101] G. Eby. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .
[102] D. Lindsley,et al. Occurrence of iron-titanium oxides in igneous rocks , 1991 .
[103] R. F. Emslie. Granitoids of rapakivi granite-anorthosite and related associations , 1991 .
[104] R. Creaser,et al. A-type granites revisited: Assessment of a residual-source model , 1991 .
[105] Z. Lindenmayer,et al. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil , 1991 .
[106] J. Anderson,et al. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America , 1989 .
[107] S. Goldstein,et al. Use and abuse of crust-formation ages , 1987 .
[108] J. Whalen,et al. A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .
[109] A. Tindle,et al. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .
[110] W. Collins,et al. Nature and origin of A-type granites with particular reference to southeastern Australia , 1982 .
[111] D. DePaolo. A neodymium and strontium isotopic study of the Mesozoic calc‐alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California , 1981 .
[112] M. Loiselle,et al. Characteristics and origin of anorogenic granites , 1979 .
[113] R. F. Emslie. Anorthosite massifs, rapakivi granites, and late proterozoic rifting of north America , 1978 .
[114] K. Marti,et al. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .
[115] P. Baertschi. Absolute18O content of standard mean ocean water , 1976 .
[116] Alfred Harker,et al. The Natural History of Igneous Rocks , 2009 .
[117] Patrick Araujo dos Santos. Geologia, petrologia e geoquímica da associação tonalito-trondhjemito-granodiorito (TTG) do extremo leste do subdomínio de transição, província Carajás , 2014 .
[118] B. Frost,et al. On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin , 2011 .
[119] P. Lima,et al. Geologia, Petrografia e Geoquímica do Batólito Seringa, Província Carajás, SSE do Pará , 2011 .
[120] I. Bindeman. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis , 2008 .
[121] J. Lafon,et al. Datação Sm-Nd em rocha total e granada do metamorfismo granulítico da região de Tartarugal Grande, Amapá Central , 2008 .
[122] A. Müller. Rapakivi granites , 2007 .
[123] R. WoNBs. Significance of the assemblage titanite * magnetite * quartz in granitic rocks , 2007 .
[124] R. Dall'agnol,et al. GEOLOGIA, PETROGRAFIA E GEOQUÍMICA DO GRANITO ANOROGÊNICO BANNACH, TERRENO GRANITO-GREENSTONE DE RIO MARIA, PARÁ , 2006 .
[125] D. Groves,et al. Geology and SHRIMP U-Pb Geochronology of the Igarapé Bahia Deposit, Carajás Copper-Gold Belt, Brazil: An Archean (2.57 Ga) Example of Iron-Oxide Cu-Au-(U-REE) Mineralization , 2005 .
[126] Jorge Silva Bettencourt,et al. Geoquímica dos granitos paleoproterozóicos da Suíte Granítica Velho Guilherme, Província Estanífera do Sul do Pará , 2005 .
[127] M. Santosh,et al. Configuration of Columbia, a Mesoproterozoic Supercontinent , 2002 .
[128] R. N. Villas,et al. O GRANITO SERRA DOS CARAJÁS: l. FÁCIES PETROGRÁFICAS E AVALIAÇÃO DO POTENCIAL METALOGENÉTICO PARA ESTANHO NO SETOR NORTE , 1995 .
[129] P. Hoffman,et al. United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia , 1988 .
[130] J. D. Cr-nlrnNs. Origin of an A-type granite: Experimental constraints , 1986 .
[131] C. Hedge,et al. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes , 1982 .
[132] S. Ishihara. The granitoid series and mineralization , 1981 .