Symplectic $ {\mathbb Z}_2^n $-manifolds

Roughly speaking, Zn 2 -manifolds are ‘manifolds’ equipped with Zn 2 -graded commutative coordinates with the sign rule being determined by the scalar product of their Zn 2 -degrees. We examine the notion of a symplectic Zn 2 -manifold, i.e., a Zn 2 -manifold equipped with a symplectic two-form that may carry non-zero Zn 2 degree. We show that the basic notions and results of symplectic geometry generalise to the ‘higher graded’ setting, including a generalisation of Darboux’s theorem.

[1]  N. Aizawa,et al.  Z2×Z2-graded mechanics: The quantization , 2021 .

[2]  On the structure of graded symplectic supermanifolds and Courant algebroids , 2002, math/0203110.

[3]  K. Grabowska,et al.  On a geometric framework for Lagrangian supermechanics , 2016, 1606.02604.

[4]  A. Bruce,et al.  Products in the category of Z_2^n manifolds , 2018 .

[5]  O. W. Greenberg,et al.  Selection rules for parafields and the absence of para particles in nature , 1965 .

[6]  S. Majid Foundations of Quantum Group Theory , 1995 .

[7]  D. Volkov On the quantization of half-integer spin fields , 1998 .

[8]  R. Trostel Color analysis, variational self‐adjointness, and color Poisson (super)algebras , 1984 .

[9]  H. Pijls,et al.  Almost commutative algebra and differential calculus on the quantum hyperplane , 1994 .

[10]  A. Bruce,et al.  The graded differential geometry of mixed symmetry tensors , 2018, Archivum Mathematicum.

[11]  Uwe Franz,et al.  Generalized Lie Algebras , 1993 .

[12]  M. Rothstein The structure of supersymplectic supermanifolds , 1991 .

[13]  The geodesic flow on a Riemannian supermanifold , 2011, 1107.1815.

[14]  A. Schwarz Geometry of Batalin-Vilkovisky quantization , 1992, hep-th/9205088.

[15]  A. Bruce On a Z n 2-Graded Version of Supersymmetry , 2019 .

[16]  D. Leites Introduction to the Theory of Supermanifolds , 1980 .

[17]  J. Grabowski,et al.  The category of Z n 2-supermanifolds , 2016 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  N. Aizawa,et al.  N-extension of double-graded supersymmetric and superconformal quantum mechanics , 2019, Journal of Physics A: Mathematical and Theoretical.

[20]  B. Kostant,et al.  Graded manifolds, graded Lie theory, and prequantization , 1977 .

[21]  A. Galaev Irreducible holonomy algebras of Riemannian supermanifolds , 2009, 0906.5250.

[22]  Riemannian supergeometry , 2006, math/0604143.

[23]  S. Duplij,et al.  Double-graded supersymmetric quantum mechanics , 2019, Journal of Mathematical Physics.

[24]  A. Bruce,et al.  Functional analytic issues in Z_2 ^n Geometry , 2018 .

[25]  N. Poncin Towards Integration on Colored Supermanifolds , 2016 .

[26]  V. Tolstoy Super-de Sitter and Alternative Super-Poincaré Symmetries , 2016, 1610.01566.

[27]  K. Mackenzie,et al.  Lie bialgebroids and Poisson groupoids , 1994 .

[28]  J. Grabowski,et al.  Odd connections on supermanifolds: existence and relation with affine connections , 2020, Journal of Physics A: Mathematical and Theoretical.

[29]  M. Asorey,et al.  Fedosov and Riemannian supermanifolds , 2008, 0803.1591.

[30]  H. Khudaverdian Semidensities on Odd Symplectic Supermanifolds , 2000, math/0012256.

[31]  H. S. Green A Generalized Method of Field Quantization , 1953 .

[32]  V. Ovsienko,et al.  Higher trace and Berezinian of matrices over a Clifford algebra , 2011, 1109.5877.

[33]  Characteristic classes of gauge systems , 2004, hep-th/0407113.

[34]  J. Grabowski,et al.  Splitting theorem for Z_2^n-supermanifolds , 2016, 1602.03671.

[35]  A. Kálnay Parastatistics and Dirac brackets , 1972 .