Symplectic $ {\mathbb Z}_2^n $-manifolds
暂无分享,去创建一个
[1] N. Aizawa,et al. Z2×Z2-graded mechanics: The quantization , 2021 .
[2] On the structure of graded symplectic supermanifolds and Courant algebroids , 2002, math/0203110.
[3] K. Grabowska,et al. On a geometric framework for Lagrangian supermechanics , 2016, 1606.02604.
[4] A. Bruce,et al. Products in the category of Z_2^n manifolds , 2018 .
[5] O. W. Greenberg,et al. Selection rules for parafields and the absence of para particles in nature , 1965 .
[6] S. Majid. Foundations of Quantum Group Theory , 1995 .
[7] D. Volkov. On the quantization of half-integer spin fields , 1998 .
[8] R. Trostel. Color analysis, variational self‐adjointness, and color Poisson (super)algebras , 1984 .
[9] H. Pijls,et al. Almost commutative algebra and differential calculus on the quantum hyperplane , 1994 .
[10] A. Bruce,et al. The graded differential geometry of mixed symmetry tensors , 2018, Archivum Mathematicum.
[11] Uwe Franz,et al. Generalized Lie Algebras , 1993 .
[12] M. Rothstein. The structure of supersymplectic supermanifolds , 1991 .
[13] The geodesic flow on a Riemannian supermanifold , 2011, 1107.1815.
[14] A. Schwarz. Geometry of Batalin-Vilkovisky quantization , 1992, hep-th/9205088.
[15] A. Bruce. On a Z n 2-Graded Version of Supersymmetry , 2019 .
[16] D. Leites. Introduction to the Theory of Supermanifolds , 1980 .
[17] J. Grabowski,et al. The category of Z n 2-supermanifolds , 2016 .
[18] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[19] N. Aizawa,et al. N-extension of double-graded supersymmetric and superconformal quantum mechanics , 2019, Journal of Physics A: Mathematical and Theoretical.
[20] B. Kostant,et al. Graded manifolds, graded Lie theory, and prequantization , 1977 .
[21] A. Galaev. Irreducible holonomy algebras of Riemannian supermanifolds , 2009, 0906.5250.
[22] Riemannian supergeometry , 2006, math/0604143.
[23] S. Duplij,et al. Double-graded supersymmetric quantum mechanics , 2019, Journal of Mathematical Physics.
[24] A. Bruce,et al. Functional analytic issues in Z_2 ^n Geometry , 2018 .
[25] N. Poncin. Towards Integration on Colored Supermanifolds , 2016 .
[26] V. Tolstoy. Super-de Sitter and Alternative Super-Poincaré Symmetries , 2016, 1610.01566.
[27] K. Mackenzie,et al. Lie bialgebroids and Poisson groupoids , 1994 .
[28] J. Grabowski,et al. Odd connections on supermanifolds: existence and relation with affine connections , 2020, Journal of Physics A: Mathematical and Theoretical.
[29] M. Asorey,et al. Fedosov and Riemannian supermanifolds , 2008, 0803.1591.
[30] H. Khudaverdian. Semidensities on Odd Symplectic Supermanifolds , 2000, math/0012256.
[31] H. S. Green. A Generalized Method of Field Quantization , 1953 .
[32] V. Ovsienko,et al. Higher trace and Berezinian of matrices over a Clifford algebra , 2011, 1109.5877.
[33] Characteristic classes of gauge systems , 2004, hep-th/0407113.
[34] J. Grabowski,et al. Splitting theorem for Z_2^n-supermanifolds , 2016, 1602.03671.
[35] A. Kálnay. Parastatistics and Dirac brackets , 1972 .