Rod Vision: Pathways and Processing in the Mammalian Retina

[1]  C. Hartmann,et al.  Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. , 2000, Investigative ophthalmology & visual science.

[2]  You-Wei Peng,et al.  Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations , 2000, Nature Neuroscience.

[3]  P Sterling,et al.  Localization of mGluR6 to dendrites of ON bipolar cells in primate retina , 2000, The Journal of comparative neurology.

[4]  R. Dacheux,et al.  GABA responses of rod bipolar cells in rabbit retinal slices , 2000, Visual Neuroscience.

[5]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[6]  S. Bloomfield,et al.  Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina , 2000, The Journal of physiology.

[7]  L. Peichl,et al.  An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Verweij,et al.  Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. , 1999, Vision Research.

[9]  Lindsay T. Sharpe,et al.  Rod pathways: the importance of seeing nothing , 1999, Trends in Neurosciences.

[10]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[11]  R. Pourcho,et al.  AMPA-selective glutamate receptor subunits GluR2 and GluR4 in the cat retina: An immunocytochemical study , 1999, Visual Neuroscience.

[12]  R. Masland,et al.  The shapes and numbers of amacrine cells: Matching of photofilled with Golgi‐stained cells in the rabbit retina and comparison with other mammalian species , 1999, The Journal of comparative neurology.

[13]  H. Wässle,et al.  Indoleamine‐accumulating amacrine cells are presynaptic to rod bipolar cells through GABAC receptors , 1999, The Journal of comparative neurology.

[14]  S. Bloomfield,et al.  Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina , 1999, Visual Neuroscience.

[15]  E. Hartveit,et al.  Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. , 1999, Journal of neurophysiology.

[16]  R. Marc,et al.  Kainate activation of horizontal, bipolar, amacrine, and ganglion cells in the rabbit retina , 1999, The Journal of comparative neurology.

[17]  R. Marc Mapping glutamatergic drive in the vertebrate retina with a channel‐permeant organic cation , 1999, The Journal of comparative neurology.

[18]  W R Taylor,et al.  TTX attenuates surround inhibition in rabbit retinal ganglion cells , 1999, Visual Neuroscience.

[19]  E. A. Schwartz,et al.  Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina , 1999, Nature.

[20]  R. Pourcho,et al.  Localization of AMPA-selective glutamate receptor subunits in the cat retina: A light- and electron-microscopic study , 1999, Visual Neuroscience.

[21]  P. Cook,et al.  Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells , 1998, Nature Neuroscience.

[22]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[23]  H. Wässle,et al.  GABAA and GABAC receptors on mammalian rod bipolar cells , 1998, The Journal of comparative neurology.

[24]  H. Wässle,et al.  Diversity of glutamate receptors in the mammalian retina , 1998, Vision Research.

[25]  Keun-Young Kim,et al.  Double-labeling techniques demonstrate that rod bipolar cells are under GABAergic control in the inner plexiform layer of the rat retina , 1998, Cell and Tissue Research.

[26]  H. Wässle,et al.  Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. , 1998, Journal of neurophysiology.

[27]  H. Wässle,et al.  Synaptic clustering of GABAC receptor ρ‐subunits in the rat retina , 1998, The European journal of neuroscience.

[28]  H. Wässle,et al.  Selective Synaptic Distribution of Kainate Receptor Subunits in the Two Plexiform Layers of the Rat Retina , 1997, The Journal of Neuroscience.

[29]  R. Wong,et al.  GABAC receptors on ferret retinal bipolar cells: A diversity of subtypes in mammals? , 1997, Visual Neuroscience.

[30]  S. Bloomfield,et al.  Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina , 1997, The Journal of comparative neurology.

[31]  N. Vardi,et al.  ON cone bipolar cells in rat express the metabotropic receptor mGluR6 , 1997, Visual Neuroscience.

[32]  S. Bloomfield,et al.  Light-induced modulation of coupling between AII amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[33]  R. Dacheux,et al.  Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation , 1997, Visual Neuroscience.

[34]  A. Burkhalter,et al.  Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex , 1996, The Journal of Neuroscience.

[35]  R. Dacheux,et al.  Connections of two types of flat cone bipolars in the rabbit retina , 1996, The Journal of comparative neurology.

[36]  H. Wässle,et al.  Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina , 1996, The Journal of Neuroscience.

[37]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[38]  S. Bloomfield Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. , 1996, Journal of neurophysiology.

[39]  W. G. Owen,et al.  Dopamine D2 receptor‐mediated modulation of rod‐cone coupling in the Xenopus retina , 1996, The Journal of comparative neurology.

[40]  S. Lipton,et al.  Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Massey,et al.  Differential properties of two gap junctional pathways made by AII amacrine cells , 1995, Nature.

[43]  P. Sterling Tuning retinal circuits , 1995, Nature.

[44]  H. Wässle,et al.  Immunocytochemical identification of cone bipolar cells in the rat retina , 1995, The Journal of comparative neurology.

[45]  N. Vardi,et al.  Simulation of the Aii amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties , 1995, Visual Neuroscience.

[46]  R. Dacheux,et al.  GABA- and glycine-activated currents in the rod bipolar cell of the rabbit retina. , 1995, Journal of neurophysiology.

[47]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[48]  A. Kaneko,et al.  L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  H. Wässle,et al.  GABAA Receptor subunits have differential distributions in the rat retinae: In situ hybridization and immunohistochemistry , 1995, The Journal of comparative neurology.

[50]  D. I. Vaney,et al.  Patterns of neuronal coupling in the retina , 1994, Progress in Retinal and Eye Research.

[51]  E. Strettoi,et al.  Cone bipolar cells as interneurons in the rod, pathway of the rabbit retina , 1994, The Journal of comparative neurology.

[52]  H. Wässle,et al.  Glycinergic synapses in the rod pathway of the rat retina: cone bipolar cells express the alpha 1 subunit of the glycine receptor , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  J. Dowling,et al.  Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  Shigetada Nakanishi,et al.  Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells , 1994, Cell.

[55]  S. Nakanishi,et al.  Expression of mRNAs of l-AP4-sensitive metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7) in the rat retina , 1994, Neuroscience Letters.

[56]  F S Werblin,et al.  A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  H. Wassle,et al.  Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  H Nawa,et al.  Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. , 1993, The Journal of biological chemistry.

[59]  H. Wässle,et al.  Pharmacology of GABA receptor CI− channels in rat retinal bipolar cells , 1993, Nature.

[60]  R. Weiler,et al.  Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  E. Strettoi,et al.  Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.

[62]  S. Bloomfield,et al.  Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. , 1992, Journal of neurophysiology.

[63]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[64]  S. Massey,et al.  Morphology of bipolar cells labeled by DAPI in the rabbit retina , 1992, The Journal of comparative neurology.

[65]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[66]  Scott Nawy,et al.  cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter , 1991, Neuron.

[67]  S. Mangel,et al.  Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. , 1991, The Journal of physiology.

[68]  M. Yamashita,et al.  Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB) , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  D. I. Vaney,et al.  Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin , 1991, Neuroscience Letters.

[70]  R. Dacheux,et al.  Axonless horizontal cells of the rabbit retina: synaptic connections and origin of the rod aftereffect , 1990, Journal of neurocytology.

[71]  D. Friedman,et al.  Evidence for Functionally Distinct Subclasses of γ‐Aminobutyric Acid Receptors in Rabbit Retina , 1990 .

[72]  Scott Nawy,et al.  Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells , 1990, Nature.

[73]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[74]  H. Wässle,et al.  Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. , 1990, Journal of neurophysiology.

[75]  R. Masland,et al.  Shapes and distributions of the catecholamine‐accumulating neurons in the rabbit retina , 1990, The Journal of comparative neurology.

[76]  A. Kaneko,et al.  Effects of glycine and GABA on isolated bipolar cells of the mouse retina. , 1990, The Journal of physiology.

[77]  R. Masland,et al.  Connections of indoleamine‐accumulating cells in the rabbit retina , 1989, The Journal of comparative neurology.

[78]  H. Wässle,et al.  Dopaminergic and indoleamine-accumulating amacrine cells express GABA- like immunoreactivity in the cat retina , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  H. Wässle,et al.  Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.

[80]  S. Fisher,et al.  Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina , 1988, The Journal of comparative neurology.

[81]  T. Voigt,et al.  Dopaminergic innervation of A II amacrine cells in mammalian retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  N. Daw,et al.  The actions of serotonergic agonists and antagonists on the activity of brisk ganglion cells in the rabbit retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[84]  P Sterling,et al.  Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  N. Osborne,et al.  Direct histochemical localisation of 5,7-dihydroxytryptamine and the uptake of serotonin by a subpopulation of GABA neurones in the rabbit retina , 1986, Brain Research.

[86]  D. I. Vaney Morphological identification of serotonin-accumulating neurons in the living retina. , 1986, Science.

[87]  R. Hess,et al.  Spatial and temporal properties of human rod vision in the achromat. , 1986, The Journal of physiology.

[88]  R. Hess,et al.  Spatial and temporal limits of vision in the achromat. , 1986, The Journal of physiology.

[89]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  S A Bloomfield,et al.  A functional organization of ON and OFF pathways in the rabbit retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  D. Hall,et al.  Ultrastructure of the rectifying electrotonic synapses between giant fibres and pectoral fin adductor motor neurons in the hatchetfish , 1985, Journal of neurocytology.

[92]  H. Kolb,et al.  A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.

[93]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[94]  Malcolm M. Slaughter,et al.  Identification of a distinct synaptic glutamate receptor on horizontal cells in mudpuppy retina , 1985, Nature.

[95]  J. Dowling,et al.  Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer. , 1985, Journal of neurophysiology.

[96]  C. K. Mitchell,et al.  Analysis of pre- and postsynaptic factors of the serotonin system in rabbit retina , 1985, The Journal of cell biology.

[97]  Rf Miller,et al.  Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  H. Korn,et al.  Voltage‐dependent dye coupling at a rectifying electrotonic synapse of the crayfish. , 1984, The Journal of physiology.

[99]  Helga Kolb,et al.  Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina , 1983, Vision Research.

[100]  S. Massey,et al.  The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina , 1983, Vision Research.

[101]  Helga Kolb,et al.  Rod pathways in the retina of the cat , 1983, Vision Research.

[102]  J D Conner,et al.  The temporal properties of rod vision. , 1982, The Journal of physiology.

[103]  R. Dacheux,et al.  Horizontal cells in the retina of the rabbit , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  S. Bloomfield,et al.  A physiological and morphological study of the horizontal cell types of the rabbit retina , 1982, The Journal of comparative neurology.

[105]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[106]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[107]  R. Dacheux,et al.  An intracellular electrophysiological study of the ontogeny of functional synapses in the rabbit retina. I. Receptors, horizontal, and bipolar cells , 1981, The Journal of comparative neurology.

[108]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[109]  S. Ellias,et al.  The dendritic varicosity: a mechanism for electrically isolating the dendrites of cat retinal amacrine cells? , 1980, Brain Research.

[110]  R. West Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections , 1978, Vision Research.

[111]  K. Tonosaki,et al.  Effect of polarisation of horizontal cells on the on-centre bipolar cell of carp retina , 1978, Nature.

[112]  P. Marchiafava,et al.  Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle , 1978, Nature.

[113]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[114]  H. Kolb,et al.  The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations , 1977, Journal of neurocytology.

[115]  R. Nelson,et al.  Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.

[116]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[117]  H B Barlow,et al.  Threshold setting by the surround of cat retinal ganglion cells. , 1976, The Journal of physiology.

[118]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells , 1976, The Journal of general physiology.

[119]  P Gouras,et al.  Horizontal cells in cat retina with independent dendritic systems. , 1975, Science.

[120]  E. Raviola,et al.  Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits , 1975, The Journal of cell biology.

[121]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[122]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[123]  E. Raviola,et al.  Gap junctions between photoreceptor cells in the vertebrate retina. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[124]  B. Boycott,et al.  The horizontal cells of the rhesus monkey retina , 1973, The Journal of comparative neurology.

[125]  K I Naka,et al.  Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells , 1972, The Journal of physiology.

[126]  P. W. Nye,et al.  Role of horizontal cells in organization of the catfish retinal receptive field. , 1971, Journal of neurophysiology.

[127]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[128]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[129]  R. H. Steinberg The rod after-effect in S-potentials from the cat retina. , 1969, Vision research.

[130]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[131]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[132]  W A Rushton,et al.  Dark adaptation and increment threshold in a rod monochromat. , 1965, The Journal of physiology.

[133]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[134]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[135]  B. Boycott,et al.  Comparative Anatomy and Function of Mammalian Horizontal Cells , 1998 .

[136]  Paul Witkovsky,et al.  Chapter 10 Functional roles of dopamine in the vertebrate retina , 1991 .

[137]  D. A. Burkhardt,et al.  Responses and receptive-field organization of cones in perch retinas. , 1977, Journal of neurophysiology.