Modified Rodrigues Parameters: An Efficient Representation of Orientation in 3D Vision and Graphics

Modified Rodrigues parameters (MRPs) are triplets in $${\mathbb {R}}^3$$R3 bijectively and rationally mapped to quaternions through stereographic projection. We present here a compelling case for MRPs as a minimal degree-of-freedom parameterization of orientation through novel solutions to prominent problems in the fields of 3D vision and computer graphics. In our primary contribution, we show that the derivatives of a unit quaternion in terms of its MRPs are simple polynomial expressions of its scalar and vector part. Furthermore, we show that updates to unit quaternions from perturbations in parameter space can be computed without explicitly invoking the parameters in the computations. Based on the former, we introduce a novel approach for designing orientation splines by configuring their back-projections in 3D space. Finally, in the general topic of nonlinear optimization for geometric vision, we run performance analyses and provide comparisons on the convergence behavior of MRP parameterizations on the tasks of absolute orientation, exterior orientation and large-scale bundle adjustment of public datasets.

[1]  J. M. Selig Lie Groups and Lie Algebras in Robotics , 2004 .

[2]  Manolis I. A. Lourakis Sparse Non-linear Least Squares Optimization for Geometric Vision , 2010, ECCV.

[3]  F. Markley,et al.  Quaternion Attitude Estimation Using Vector Observations , 2000 .

[4]  Anders P. Eriksson,et al.  Solving quadratically constrained geometrical problems using lagrangian duality , 2008, 2008 19th International Conference on Pattern Recognition.

[5]  Ken Shoemake,et al.  Quaternion calculus and fast animation , 1987 .

[6]  E. Catmull,et al.  A CLASS OF LOCAL INTERPOLATING SPLINES , 1974 .

[7]  Mark Whitty,et al.  Robotics, Vision and Control. Fundamental Algorithms in MATLAB , 2012 .

[8]  B. A. MacDonald,et al.  Quaternions and Motion Interpolation: A Tutorial , 1989 .

[9]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[10]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[11]  Tom Drummond,et al.  An Iterative 5-pt Algorithm for Fast and Robust Essential Matrix Estimation , 2013, BMVC.

[12]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[13]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[14]  P. B. Davenport A vector approach to the algebra of rotations with applications , 1968 .

[15]  John K. Johnstone,et al.  Rational control of orientation for animation , 1995 .

[16]  Javier González,et al.  Convex Global 3D Registration with Lagrangian Duality , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  J. Junkins,et al.  HIGHER-ORDER CAYLEY TRANSFORMS WITH APPLICATIONS TO ATTITUDE REPRESENTATIONS , 1997 .

[18]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[19]  V. Leitáo,et al.  Computer Graphics: Principles and Practice , 1995 .

[20]  Knut Hüper,et al.  Smooth interpolation of orientation by rolling and wrapping for robot motion planning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[21]  Roberto Cipolla,et al.  Application of Lie Algebras to Visual Servoing , 2000, International Journal of Computer Vision.

[22]  Richard Szeliski,et al.  Bundle Adjustment in the Large , 2010, ECCV.

[23]  Alan Watt,et al.  3D Computer Graphics , 1993 .

[24]  J. Junkins,et al.  Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters , 1996 .

[25]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision: Algorithm Evaluation and Error Analysis , 2004 .

[26]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[27]  James M. Longuski,et al.  A New Parameterization of the Attitude Kinematics , 1995 .

[28]  Hongdong Li,et al.  Rotation Averaging , 2013, International Journal of Computer Vision.

[29]  Giuseppe Carlo Calafiore,et al.  Lagrangian duality in 3D SLAM: Verification techniques and optimal solutions , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[30]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[31]  Venu Madhav Govindu,et al.  Efficient and Robust Large-Scale Rotation Averaging , 2013, 2013 IEEE International Conference on Computer Vision.

[32]  Nick Barnes,et al.  Rotation Averaging with Application to Camera-Rig Calibration , 2009, ACCV.

[33]  Jochen Trumpf,et al.  L1 rotation averaging using the Weiszfeld algorithm , 2011, CVPR 2011.

[34]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[35]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[36]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[37]  Roberto Cipolla,et al.  Real-Time Visual Tracking of Complex Structures , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[39]  Lin Feng-yun,et al.  Development of a robot system for complex surfaces polishing based on CL data , 2005 .

[40]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[41]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[42]  Thomas Freud. Wiener,et al.  Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments , 1962 .

[43]  Daniel Pletinckx,et al.  Quaternion calculus as a basic tool in computer graphics , 2005, The Visual Computer.

[44]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[45]  L. Vicci Quaternions and Rotations in 3-Space: The Algebra and its Geometric Interpretation , 2001 .

[46]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[47]  John L. Crassidis,et al.  Fundamentals of Spacecraft Attitude Determination and Control , 2014 .

[48]  Sung Yong Shin,et al.  A general construction scheme for unit quaternion curves with simple high order derivatives , 1995, SIGGRAPH.

[49]  Rida T. Farouki,et al.  Structural invariance of spatial Pythagorean hodographs , 2002, Comput. Aided Geom. Des..

[50]  Alan H. Watt 3d Computer Graphics with Cdrom , 1999 .

[51]  Manolis I. A. Lourakis An efficient solution to absolute orientation , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[52]  Manolis I. A. Lourakis,et al.  Model-Based Pose Estimation for Rigid Objects , 2013, ICVS.

[53]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[54]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[55]  M. Shuster A survey of attitude representation , 1993 .

[56]  Erik B. Dam,et al.  Quaternions, Interpolation and Animation , 2000 .

[57]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[58]  Guilin Yang,et al.  Workspace generation and planning singularity-free path for parallel manipulators , 2005 .

[59]  Kenneth S. Roberts,et al.  Smooth interpolation of rotational motions , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[60]  Nicolas Boumal,et al.  Interpolation and Regression of Rotation Matrices , 2013, GSI.

[61]  Hans Bock,et al.  Shortest paths for satellite mounted robot manipulators , 1994 .

[62]  Guido Bugmann,et al.  A Recipe on the Parameterization of Rotation Matrices for Non-Linear Optimization using Quaternions , 2012 .

[63]  C. J. Taylor,et al.  Minimization on the Lie Group SO(3) and Related Manifolds , 1994 .

[64]  Ravi Ramamoorthi,et al.  Dynamic Splines with Constraints for Animation , 1997 .

[65]  John L. Junkins,et al.  Principal rotation representations of proper N × N orthogonal matrices , 1995 .

[66]  Anthony J. Yezzi,et al.  A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates , 2013, Journal of Mathematical Imaging and Vision.