Local Projection Stabilization for the Oseen System on Anisotropic Cartesian Meshes
暂无分享,去创建一个
[1] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[2] Roland Becker,et al. Parameter identification for chemical models in combustion problems , 2005 .
[3] Peter Hansbo,et al. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .
[4] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[5] Erik Burman,et al. Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..
[6] Ralf Gritzki,et al. Stabilized FEM with Anisotropic Mesh Refinement for the Oseen Problem , 2006 .
[7] P. Hansbo,et al. Edge Stabilization for the Incompressible Navier-Stokes Equations: a Continuous Interior Penalty Finite Element Method , 2004 .
[8] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[9] Simona Perotto,et al. Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.
[10] Thomas Richter,et al. Local Projection Stabilization for the Stokes System on Anisotropic Quadrilateral Meshes , 2006 .
[11] T. Richter,et al. SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .
[12] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[13] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .
[14] Torsten Linß. Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems , 2005 .
[15] Lutz Tobiska,et al. A modified streamline diffusion method for solving the stationary Navier-Stokes equation , 1991 .
[16] Malte Braack,et al. Stabilized finite elements for 3D reactive flows , 2006 .
[17] T. Apel,et al. Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .