Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: Light and temperature

Abstract Starting from results obtained at the laboratory scale on Porphyridium cruentum cultures under non-limited nutrient conditions, equations have been developed which allow of the estimation of the algal growth-rate according to variations of temperature and light intensity. These two factors, which are generally considered as being independents, are in fact closely related. At least two of the coefficients that determine the growth-rate response to the light intensity may be expressed as a function of temperature. The growth model established allows estimation of the growth rate of Porphyridium cruentum within the ranges of temperature 5–35°C and light intensities 0 to 1100 μmol photons m −2 s −1 .

[1]  D. Chapman,et al.  Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum , 1976 .

[2]  A. Dauta,et al.  Interaction de la lumière et de la température sur le taux de croissance de Scenedesmus crassus , 1981 .

[3]  S. Katoh,et al.  Arachidonic acid production by the red alga Porphyridium cruentum , 1983, Biotechnology and bioengineering.

[4]  A. Keller Modeling the effects of temperature, light, and nutrients on primary productivity: An empirical and a mechanistic approach compared , 1989 .

[5]  C. Gudin,et al.  Studies on optimal conditions for polysaccharide production byPorphyridium cruentum , 1985 .

[6]  Gene E. Likens,et al.  The assumptions and rationales of a computer model of phytoplankton population dynamics1 , 1975 .

[7]  M. Borowitzka,et al.  Micro-algae as sources of fine chemicals. , 1986, Microbiological sciences.

[8]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[9]  John H. Steele,et al.  ENVIRONMENTAL CONTROL OF PHOTOSYNTHESIS IN THE SEA , 1962 .

[10]  E. Gantt,et al.  THE ULTRASTRUCTURE OF PORPHYRIDIUM CRUENTUM , 1965, The Journal of cell biology.

[11]  A. Richmond,et al.  The feasibility of mass cultivation of Porphyridium , 1985 .

[12]  I. Fridovich,et al.  Purification and properties of superoxide dismutase from a red alga, Porphyridium cruentum. , 1977, The Journal of biological chemistry.

[13]  A. Richmond,et al.  EFFECT OF ENVIRONMENTAL CONDITIONS ON FATTY ACID COMPOSITION OF THE RED ALGA PORPHYRIDIUM CRUENTUM: CORRELATION TO GROWTH RATE 1 , 1988 .

[14]  Daniel Chaumont,et al.  Cell fragility — The key problem of microalgae mass production in closed photobioreactors , 1991 .

[15]  A. Dauta Conditions de développement du phytoplancton. Etude comparative du comportement de huit espèces en culture. I. Détermination des paramètres de croissance en fonction de la lumière et de la température , 1982 .

[16]  C. D. Collins,et al.  PHYSIOLOGICAL RESPONSES OF ANABAENA VARIABILIS (CYANOPHYCEAE) TO INSTANTANEOUS EXPOSURE TO VARIOUS COMBINATIONS OF LIGHT INTENSITY AND TEMPERATURE 1 , 1982 .

[17]  Janet R. Stein-Taylor Culture methods and growth measurements , 1973 .

[18]  C. Gudin,et al.  Bioconversion of solar energy into organic chemicals by microalgae , 1986 .

[19]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[20]  R. A. Parker Empirical Functions Relating Metabolic Processes in Aquatic Systems to Environmental Variables , 1974 .

[21]  J. Peeters,et al.  A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton , 1988 .

[22]  J. A. Hellebust,et al.  Floridean starch metabolism of Porphyridium purpureum (Rhodophyta) , 1979 .

[23]  J. Craigie,et al.  Sulfated Polysaccharides in Red and Brown Algae , 1979 .

[24]  D. Morse,et al.  γ-Aminobutyric Acid, a Neurotransmitter, Induces Planktonic Abalone Larvae to Settle and Begin Metamorphosis , 1979, Science.

[25]  M. Sommerfeld,et al.  COMPARATIVE STUDIES IN THE GENUS PORPHYRIDIUM NAEG. 1, 2 , 1970 .