Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: Light and temperature
暂无分享,去创建一个
Daniel Chaumont | A. Dauta | D. Chaumont | Jean-Marc Thébault | Alain Dauta | Djamila Dermoun | J. Thébault | Djamila Dermoun
[1] D. Chapman,et al. Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum , 1976 .
[2] A. Dauta,et al. Interaction de la lumière et de la température sur le taux de croissance de Scenedesmus crassus , 1981 .
[3] S. Katoh,et al. Arachidonic acid production by the red alga Porphyridium cruentum , 1983, Biotechnology and bioengineering.
[4] A. Keller. Modeling the effects of temperature, light, and nutrients on primary productivity: An empirical and a mechanistic approach compared , 1989 .
[5] C. Gudin,et al. Studies on optimal conditions for polysaccharide production byPorphyridium cruentum , 1985 .
[6] Gene E. Likens,et al. The assumptions and rationales of a computer model of phytoplankton population dynamics1 , 1975 .
[7] M. Borowitzka,et al. Micro-algae as sources of fine chemicals. , 1986, Microbiological sciences.
[8] Trevor Platt,et al. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .
[9] John H. Steele,et al. ENVIRONMENTAL CONTROL OF PHOTOSYNTHESIS IN THE SEA , 1962 .
[10] E. Gantt,et al. THE ULTRASTRUCTURE OF PORPHYRIDIUM CRUENTUM , 1965, The Journal of cell biology.
[11] A. Richmond,et al. The feasibility of mass cultivation of Porphyridium , 1985 .
[12] I. Fridovich,et al. Purification and properties of superoxide dismutase from a red alga, Porphyridium cruentum. , 1977, The Journal of biological chemistry.
[13] A. Richmond,et al. EFFECT OF ENVIRONMENTAL CONDITIONS ON FATTY ACID COMPOSITION OF THE RED ALGA PORPHYRIDIUM CRUENTUM: CORRELATION TO GROWTH RATE 1 , 1988 .
[14] Daniel Chaumont,et al. Cell fragility — The key problem of microalgae mass production in closed photobioreactors , 1991 .
[15] A. Dauta. Conditions de développement du phytoplancton. Etude comparative du comportement de huit espèces en culture. I. Détermination des paramètres de croissance en fonction de la lumière et de la température , 1982 .
[16] C. D. Collins,et al. PHYSIOLOGICAL RESPONSES OF ANABAENA VARIABILIS (CYANOPHYCEAE) TO INSTANTANEOUS EXPOSURE TO VARIOUS COMBINATIONS OF LIGHT INTENSITY AND TEMPERATURE 1 , 1982 .
[17] Janet R. Stein-Taylor. Culture methods and growth measurements , 1973 .
[18] C. Gudin,et al. Bioconversion of solar energy into organic chemicals by microalgae , 1986 .
[19] W. Richard,et al. TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .
[20] R. A. Parker. Empirical Functions Relating Metabolic Processes in Aquatic Systems to Environmental Variables , 1974 .
[21] J. Peeters,et al. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton , 1988 .
[22] J. A. Hellebust,et al. Floridean starch metabolism of Porphyridium purpureum (Rhodophyta) , 1979 .
[23] J. Craigie,et al. Sulfated Polysaccharides in Red and Brown Algae , 1979 .
[24] D. Morse,et al. γ-Aminobutyric Acid, a Neurotransmitter, Induces Planktonic Abalone Larvae to Settle and Begin Metamorphosis , 1979, Science.
[25] M. Sommerfeld,et al. COMPARATIVE STUDIES IN THE GENUS PORPHYRIDIUM NAEG. 1, 2 , 1970 .