Nitro-substituted aryl lithium compounds in microreactor synthesis: switch between kinetic and thermodynamic control.

[1]  H. Löwe,et al.  Chemistry in microstructured reactors. , 2004, Angewandte Chemie.

[2]  Jun-ichi Yoshida,et al.  Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. , 2007, Journal of the American Chemical Society.

[3]  Renato Dalpozzo,et al.  The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles , 1989 .

[4]  C. Bradsher,et al.  Aromatic organolithium reagents bearing electrophilic groups. Preparation by halogen-lithium exchange , 1982 .

[5]  P. Knochel,et al.  Synthese hoch funktionalisierter Organomagnesiumreagentien durch Halogen-Metall-Austausch , 2003 .

[6]  J. Bonjoch,et al.  Total Synthesis of (-)-Strychnine via the Wieland-Gumlich Aldehyde. , 1999, Angewandte Chemie.

[7]  P. Buck Reaktionen aromatischer Nitroverbindungen mit Basen , 1969 .

[8]  K. Mae,et al.  Room-temperature Swern oxidations by using a microscale flow system. , 2005, Angewandte Chemie.

[9]  T. Wirth,et al.  Advanced organic synthesis using microreactor technology. , 2007, Organic & biomolecular chemistry.

[10]  P. Knochel Handbook of Functionalized Organometallics , 2005 .

[11]  J. Yoshida Flash chemistry using electrochemical method and microsystems. , 2005, Chemical communications.

[12]  J. Gilmore,et al.  Synthesis of 7-Formylindole Using the Bartoli Indole Methodology , 1992 .

[13]  J. Kobayashi,et al.  Multiphase organic synthesis in microchannel reactors. , 2006, Chemistry, an Asian journal.

[14]  P. Knochel,et al.  Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. , 2003, Angewandte Chemie.

[15]  Albert van den Berg,et al.  On-microchip multiphase chemistry - a review of microreactor design principles and reagent contacting modes , 2005 .

[16]  J. Yoshida,et al.  Selective monolithiation of dibromobiaryls using microflow systems. , 2008, Organic letters.

[17]  G. Köbrich,et al.  Nachweis und Darstellung metallierter Nitroaromaten , 1970 .

[18]  J. Yoshida,et al.  Generation and Reactions of α-Silyloxiranyllithium in a Microreactor , 2009 .

[19]  Jean M. J. Fréchet,et al.  Photogeneration of organic bases from o-nitrobenzyl-derived carbamates , 1991 .

[20]  Jeremy L. Steinbacher,et al.  Greener approaches to organic synthesis using microreactor technology. , 2007, Chemical reviews.

[21]  Aiichiro Nagaki,et al.  Aryllithium compounds bearing alkoxycarbonyl groups: generation and reactions using a microflow system. , 2008, Angewandte Chemie.

[22]  M. Schlosser Der 2×3‐Werkzeugkasten der metallorganischen Methoden zur regiochemisch erschöpfenden Funktionalisierung , 2005 .

[23]  Holger Löwe,et al.  Chemie in Mikrostrukturreaktoren , 2004 .

[24]  G. Bartoli,et al.  Mechanistic studies on the reaction of nitro- and nitrosoarenes with vinyl Grignard reagents , 1991 .

[25]  P. Knochel,et al.  New Applications of Polyfunctional Organometallic Compounds in Organic Synthesis Frequently used abbreviations are defined at the end of the article. , 2000, Angewandte Chemie.

[26]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[27]  P. Baran,et al.  Protecting-group-free synthesis as an opportunity for invention. , 2009, Nature chemistry.

[28]  M. Cava,et al.  Organotellurium chemistry. 3. (o-Nitrophenyl)tellurenyl bromide: a highly stabilized tellurenyl halide , 1979 .

[29]  P. Knochel,et al.  Synthesis of functionalized nitroarylmagnesium halides via an iodine-magnesium exchange. , 2005, The Journal of organic chemistry.

[30]  Paul Watts,et al.  Self-supported and clean one-step cathodic coupling of activated olefins with benzyl bromide derivatives in a micro flow reactor. , 2006, Angewandte Chemie.

[31]  Shin-ichi Tanaka,et al.  Large-scale synthesis of immunoactivating natural product, pristane, by continuous microfluidic dehydration as the key step. , 2007, Organic letters.

[32]  P. Knochel,et al.  General preparation of functionalized o-nitroarylmagnesium halides through an iodine-magnesium exchange. , 2002, Angewandte Chemie.

[33]  Bosch,et al.  Enantioselective total synthesis of Wieland-Gumlich aldehyde and (-)-strychnine , 2000, Chemistry.

[34]  Paul Watts,et al.  The application of micro reactors for organic synthesis. , 2005, Chemical Society reviews.

[35]  P. Buck Reactions of Aromatic Nitro Compounds with Bases , 1969 .

[36]  P. Knochel,et al.  Preparation of highly functionalized magnesium, zinc, and copper aryl and alkenyl organometallics via the corresponding organolithiums , 1992 .

[37]  R. Gleiter,et al.  Zur Thermolyse von o-Nitro-phenyllithium , 1970 .

[38]  Helen Song,et al.  Reaktionen in Mikrofluidiktröpfchen , 2006 .

[39]  Peter H Seeberger,et al.  Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century? , 2006, Chemistry.

[40]  P. Knochel,et al.  Neue Anwendungen für polyfunktionalisierte Organometallverbindungen in der organischen Synthese , 2000 .

[41]  Yoichi M. A. Yamada,et al.  Instantaneous Carbon−Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane , 2006 .

[42]  M. Schlosser The 2 x 3 toolbox of organometallic methods for regiochemically exhaustive functionalization. , 2005, Angewandte Chemie.

[43]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[44]  K. Jensen,et al.  Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. , 2007, Angewandte Chemie.

[45]  J. Yoshida,et al.  Oxiranyl anion methodology using microflow systems. , 2009, Journal of the American Chemical Society.

[46]  Daniel Solé,et al.  Totalsynthese von (−)‐Strychnin über den Wieland‐Gumlich‐Aldehyd , 1999 .

[47]  Jun-ichi Yoshida,et al.  Integrated micro flow synthesis based on sequential Br-Li exchange reactions of p-, m-, and o-dibromobenzenes. , 2007, Chemistry, an Asian journal.

[48]  M. Pirrung,et al.  7-Alkyl Indole Synthesis via a Convenient Formation/Alkylation of Lithionitrobenzenes and an Improved Bartoli Reaction , 2002 .

[49]  Helen Song,et al.  Reactions in droplets in microfluidic channels. , 2006, Angewandte Chemie.

[50]  G. C. Micalizio,et al.  Total synthesis of macbecin I. , 2008, Angewandte Chemie.

[51]  Christian H. Hornung,et al.  A Microcapillary Flow Disc Reactor for Organic Synthesis , 2007 .

[52]  J. Gilmore,et al.  The Synthesis of 7-Alkoxyindoles , 1991 .

[53]  J. Bonjoch,et al.  A General Synthetic Entry to Strychnos Alkaloids of the Curan Type via a Common 3a-(2-Nitrophenyl)hexahydroindol-4-one Intermediate. Total Syntheses of (±)- and (−)-Tubifolidine, (±)-Akuammicine, (±)-19,20-Dihydroakuammicine, (±)-Norfluorocurarine, (±)-Echitamidine, and (±)-20-Epilochneridine1 , 1997 .

[54]  K. Mae,et al.  Control of extremely fast competitive consecutive reactions using micromixing. Selective Friedel-Crafts aminoalkylation. , 2005, Journal of the American Chemical Society.

[55]  Takahide Fukuyama,et al.  Spurring radical reactions of organic halides with tin hydride and TTMSS using microreactors. , 2008, Organic letters.

[56]  J. Yoshida,et al.  Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems , 2009, Beilstein journal of organic chemistry.