Error correction via linear programming

Suppose we wish to transmit a vector f ϵ Rn reliably. A frequently discussed approach consists in encoding f with an m by n coding matrix A. Assume now that a fraction of the entries of Af are corrupted in a completely arbitrary fashion by an error e. We do not know which entries are affected nor do we know how they are affected. Is it possible to recover f exactly from the corrupted m-dimensional vector y = Af + e?

[1]  V. Milman,et al.  Unconditional and symmetric sets inn-dimensional normed spaces , 1980 .

[2]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  M. Lifshits Gaussian Random Functions , 1995 .

[5]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[6]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[7]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[8]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[9]  M. Ledoux The concentration of measure phenomenon , 2001 .

[10]  Vivek K. Goyal,et al.  Multiple description coding: compression meets the network , 2001, IEEE Signal Process. Mag..

[11]  Antonio Ortega,et al.  Efficient quantization for overcomplete expansions in R/sup N/ , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[12]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[13]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[14]  Vivek K. Goyal,et al.  Theoretical foundations of transform coding , 2001, IEEE Signal Process. Mag..

[15]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[16]  Vivek K. Goyal,et al.  Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.

[17]  S. Artstein Proportional concentration phenomena on the sphere , 2002 .

[18]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[19]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[20]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[22]  Jon Feldman,et al.  Decoding error-correcting codes via linear programming , 2003 .

[23]  Antonio Ortega,et al.  Efficient quantization for overcomplete expansions in RN , 2003, IEEE Trans. Inf. Theory.

[24]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[25]  Arkadi Nemirovski,et al.  On sparse representation in pairs of bases , 2003, IEEE Trans. Inf. Theory.

[26]  Martin J. Wainwright,et al.  LP decoding corrects a constant fraction of errors , 2004, ISIT.

[27]  S. Mendelson Geometric Parameters in Learning Theory , 2004 .

[28]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[29]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[30]  Jon Feldman,et al.  LP decoding achieves capacity , 2005, SODA '05.

[31]  Joel A. Tropp,et al.  Recovery of short, complex linear combinations via /spl lscr//sub 1/ minimization , 2005, IEEE Transactions on Information Theory.

[32]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[33]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[34]  M. Rudelson,et al.  Geometric approach to error-correcting codes and reconstruction of signals , 2005, math/0502299.

[35]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[36]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[39]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[40]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[41]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[42]  Yaakov Tsaig,et al.  Breakdown of equivalence between the minimal l1-norm solution and the sparsest solution , 2006, Signal Process..