Probe-level estimation improves the detection of differential splicing in Affymetrix exon array studies

The recent advent of exon microarrays has made it possible to reveal differences in alternative splicing events on a global scale. We introduce a novel statistical procedure that takes full advantage of the probe-level information on Affymetrix exon arrays when detecting differential splicing between sample groups. In comparison to existing ranking methods, the procedure shows superior reproducibility and accuracy in distinguishing true biological findings from background noise in high agreement with experimental validations.

[1]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[2]  Richard E. Kennedy,et al.  SScore: an R package for detecting differential gene expression without gene expression summaries , 2006, Bioinform..

[3]  Tyson A. Clark,et al.  Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array , 2006, BMC Genomics.

[4]  James H. Bullard,et al.  aroma.affymetrix: A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory , 2008 .

[5]  D. Black Mechanisms of alternative pre-messenger RNA splicing. , 2003, Annual review of biochemistry.

[6]  P. Sharp,et al.  Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites , 2008, Science.

[7]  Neil D. Lawrence,et al.  Probe-level measurement error improves accuracy in detecting differential gene expression , 2006, Bioinform..

[8]  Matej Oresic,et al.  Improving identification of differentially expressed genes by integrative analysis of Affymetrix and Illumina arrays. , 2006, Omics : a journal of integrative biology.

[9]  J. Castle,et al.  Genome-Wide Survey of Human Alternative Pre-mRNA Splicing with Exon Junction Microarrays , 2003, Science.

[10]  Gene Signal Estimates from Exon Arrays , 2005 .

[11]  Guey-Shin Wang,et al.  Splicing in disease: disruption of the splicing code and the decoding machinery , 2007, Nature Reviews Genetics.

[12]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[13]  Fred H. Gage,et al.  Alternative Splicing Events Identified in Human Embryonic Stem Cells and Neural Progenitors , 2007, PLoS Comput. Biol..

[14]  Tyson A. Clark,et al.  Discovery of tissue-specific exons using comprehensive human exon microarrays , 2007, Genome Biology.

[15]  F. Clark,et al.  Understanding alternative splicing: towards a cellular code , 2005, Nature Reviews Molecular Cell Biology.

[16]  Jacek Majewski,et al.  Gene Expression and Isoform Variation Analysis using Affymetrix Exon Arrays , 2008, BMC Genomics.

[17]  V. Beneš,et al.  Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis. , 2007, RNA.

[18]  Mark D. Robinson,et al.  FIRMA: a method for detection of alternative splicing from exon array data , 2008, Bioinform..

[19]  Hui Jiang,et al.  MADS: a new and improved method for analysis of differential alternative splicing by exon-tiling microarrays. , 2008, RNA.

[20]  Michal J. Okoniewski,et al.  Comprehensive Analysis of Affymetrix Exon Arrays Using BioConductor , 2008, PLoS Comput. Biol..

[21]  Nabil Belacel,et al.  Microarray analysis of alternative splicing. , 2006, Omics : a journal of integrative biology.

[22]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[23]  Alternative Transcript Analysis Methods for Exon Arrays , 2005 .

[24]  Dorothea Emig,et al.  Integrating expression data with domain interaction networks , 2008, Bioinform..

[25]  Simon Cawley,et al.  ANOSVA: a statistical method for detecting splice variation from expression data , 2005, ISMB.

[26]  Tero Aittokallio,et al.  Integrating probe-level expression changes across generations of Affymetrix arrays , 2005, Nucleic acids research.

[27]  B. Blencowe Alternative Splicing: New Insights from Global Analyses , 2006, Cell.

[28]  Jean-Philippe Vert,et al.  Supervised reconstruction of biological networks with local models , 2007, ISMB/ECCB.

[29]  Michal J. Okoniewski,et al.  Exon level integration of proteomics and microarray data , 2008, BMC Bioinformatics.

[30]  J. Venables Unbalanced alternative splicing and its significance in cancer , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[32]  Brendan J. Frey,et al.  Inferring global levels of alternative splicing isoforms using a generative model of microarray data , 2006, Bioinform..

[33]  Sandya Liyanarachchi,et al.  A high performance test of differential gene expression for oligonucleotide arrays , 2003, Genome Biology.

[34]  Michael Q. Zhang,et al.  Profiling alternatively spliced mRNA isoforms for prostate cancer classification , 2006, BMC Bioinformatics.

[35]  Daniel J. Gaffney,et al.  Gene expression and isoform variation analysis using Affymetrix exon arrays , 2009, BMC Genomics.