An implicit collocation algorithm based on cubic extended B-splines for Caputo time-fractional PDE

Abstract In this paper, an implicit collocation algorithm based on cubic extended B-spline (CExtB-spline) functions is presented for Caputo time-fractional PDE. The derivatives with respect to space variable are discretized using CExtB-spline collocation procedure. The obtained results are compared with existing results. It is noticed that the proposed technique gives more accurate results.

[1]  I. Dag,et al.  The extended cubic B-spline algorithm for a modified regularized long wave equation , 2013 .

[2]  Maggs,et al.  Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. , 1996, Physical review letters.

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  M. J. Huntul,et al.  A modified trigonometric cubic B-spline collocation technique for solving the time-fractional diffusion equation , 2021 .

[5]  Vineet K. Srivastava,et al.  Extended modified cubic B-spline algorithm for nonlinear Burgers' equation , 2016 .

[6]  Gang Xu,et al.  Extended Cubic Uniform B-spline and α-B-spline , 2008 .

[7]  A. Atangana,et al.  An efficient numerical approach for fractional diffusion partial differential equations , 2020 .

[8]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[9]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[10]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[11]  HongGuang Sun,et al.  A semi-discrete finite element method for a class of time-fractional diffusion equations , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Ali Saleh Alshomrani,et al.  A numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations , 2017 .

[13]  Ram Jiwari,et al.  Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions , 2014, Advances in Difference Equations.

[14]  K. Sayevand,et al.  Cubic B-spline collocation method and its application for anomalous fractional diffusion equations in transport dynamic systems , 2016 .

[15]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[16]  Mohammad Tamsir,et al.  Extended modified cubic B-spline algorithm for nonlinear Fisher’s reaction-diffusion equation , 2016 .

[17]  Pratim K. Chattaraj,et al.  Stability analysis of finite difference schemes for quantum mechanical equations of motion , 1987 .

[18]  B. A. Jacobs,et al.  High‐order compact finite difference and laplace transform method for the solution of time‐fractional heat equations with dirchlet and neumann boundary conditions , 2016 .

[19]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[20]  Massimiliano Giona,et al.  Fractional diffusion equation and relaxation in complex viscoelastic materials , 1992 .

[21]  M. Khader On the numerical solutions for the fractional diffusion equation , 2011 .

[22]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[23]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[24]  Anand Chauhan,et al.  Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique , 2021, AIMS Mathematics.