On principal points for location mixtures of spherically symmetric distributions

Abstract In this paper, we investigate some properties of 2-principal points for location mixtures of spherically symmetric distributions with focus on a linear subspace in which a set of 2-principal points must lie. Our results can be viewed as an extension of those of Yamamoto and Shinozaki [2000. Two principal points for multivariate location mixtures of spherically symmetric distributions. J. Japan Statist. Soc. 30, 53–63], where a finite location mixture of spherically symmetric distributions is treated. As an extension of their paper, this paper defines a wider class of distributions, and derives a linear subspace in which a set of 2-principal points must exist. A theorem useful for comparing the mean squared distances is also established.