Invariant sets and guaranteed cost control of nonlinear quadratic systems

This paper addresses the problem of designing a guaranteed cost controller for continuous-time nonlinear quadratic systems. The main result is a sufficient condition for the existence of a linear state feedback controller achieving an assigned guaranteed cost, whenever the state trajectories remain within a suitable invariant set. The conditions are cast in the form of Linear Matrix Inequalities (LMIs), which can be efficiently solved via available optimization algorithms. The effectiveness of the devised approach is illustrated through an example concerning the attitude control of an unmanned aerial vehicle.

[1]  Andrew Packard,et al.  Control Applications of Sum of Squares Programming , 2005 .

[2]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[3]  D. Gangsaas,et al.  Application of Modern Synthesis to Aircraft Control : Three Case Studies , 2001 .

[4]  M. Tomizuka,et al.  Linear quadratic design of decoupled preview controllers for robotic arms , 1985 .

[5]  V. A. Belyakov,et al.  Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER , 1999 .

[6]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[7]  Francesco Amato,et al.  Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters , 2006 .

[8]  O. Rössler Chaotic Behavior in Simple Reaction Systems , 1976 .

[9]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[10]  Christopher D. Hall,et al.  Spacecraft Dynamics and Control , 2002 .

[11]  T. K. C. Peng,et al.  Adaptive Guaranteed Cost of Control of Systems with Uncertain Parameters , 1970 .

[12]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[13]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: Contents , 1997 .

[14]  G. Chesi Domain of Attraction: Analysis and Control via SOS Programming , 2011 .

[15]  D. McFarlane,et al.  Optimal guaranteed cost control and filtering for uncertain linear systems , 1994, IEEE Trans. Autom. Control..

[16]  Carlo Cosentino,et al.  On the region of attraction of nonlinear quadratic systems , 2007, Autom..

[17]  Vijay Vittal,et al.  Application of the normal form of vector fields to predict interarea separation in power systems , 1997 .

[18]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[19]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[20]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[21]  D. Gangsaas,et al.  Application of modem synthesis to aircraft control: Three case studies , 1986 .

[22]  Francesco Amato,et al.  An insight into tumor dormancy equilibrium via the analysis of its domain of attraction , 2008, Biomed. Signal Process. Control..

[23]  M. G. Lyons,et al.  Frequency-shaping methods in large space structures control , 1981 .

[24]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[25]  Hiroyuki Ichihara Optimal Control for Polynomial Systems Using Matrix Sum of Squares Relaxations , 2009, IEEE Transactions on Automatic Control.

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  Graziano Chesi,et al.  Computing output feedback controllers to enlarge the domain of attraction in polynomial systems , 2004, IEEE Transactions on Automatic Control.

[28]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .