PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. Here we show that PARP14 is dual function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a dramatic increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response. Teaser PARP14 is an antiviral PARP that combines ADP-ribosylation writer, reader and eraser functions in one polypeptide.

[1]  H. Schüler,et al.  PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation , 2023, bioRxiv.

[2]  Sumana Sanyal,et al.  Updated protein domain annotation of the PARP protein family sheds new light on biological function , 2023, Nucleic acids research.

[3]  D. Filippov,et al.  Chemoenzymatic and Synthetic Approaches To Investigate Aspartate- and Glutamate-ADP-Ribosylation. , 2023, Journal of the American Chemical Society.

[4]  I. Ahel,et al.  Serine ADP-ribosylation in Drosophila provides insights into the evolution of reversible ADP-ribosylation signalling , 2023, Nature communications.

[5]  M. Daugherty,et al.  Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins , 2023, Pathogens.

[6]  Anthony R. Fehr,et al.  SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in mice , 2023, bioRxiv.

[7]  I. Matic,et al.  Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling , 2023, Molecular cell.

[8]  M. Shipp,et al.  DTX3L E3 ligase targets p53 for degradation at poly ADP-ribose polymerase-associated DNA damage sites. , 2023, iScience.

[9]  Nadezhda T. Doncheva,et al.  The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest , 2022, Nucleic Acids Res..

[10]  D. Filippov,et al.  Arginine ADP-Ribosylation: Chemical Synthesis of Post-Translationally Modified Ubiquitin Proteins , 2022, Journal of the American Chemical Society.

[11]  I. Ahel,et al.  DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates , 2022, Science advances.

[12]  G. Montoya,et al.  DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network , 2022, bioRxiv.

[13]  J. Whitney,et al.  An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. , 2022, Molecular cell.

[14]  George-Lucian Moldovan,et al.  The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1 , 2022, Nature Communications.

[15]  Lucas E. Wange,et al.  PARP14 is a novel target in STAT6 mutant follicular lymphoma , 2022, Leukemia.

[16]  Shishen Du,et al.  Tankyrases inhibit innate antiviral response by PARylating VISA/MAVS and priming it for RNF146-mediated ubiquitination and degradation , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Anthony R. Fehr,et al.  PARP14: A key ADP-ribosylating protein in host–virus interactions? , 2022, PLoS pathogens.

[18]  N. Mailand,et al.  SCAI promotes error‐free repair of DNA interstrand crosslinks via the Fanconi anemia pathway , 2022, EMBO reports.

[19]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[20]  M. Lopes,et al.  TARG1 protects against toxic DNA ADP-ribosylation , 2021, Nucleic acids research.

[21]  I. Ahel,et al.  Molecular basis for DarT ADP-ribosylation of a DNA base , 2021, Nature.

[22]  I. Ahel,et al.  Serine ADP-ribosylation in DNA-damage response regulation. , 2021, Current opinion in genetics & development.

[23]  A. Ashworth,et al.  ADP-ribosyltransferases, an update on function and nomenclature , 2021, The FEBS journal.

[24]  Y. Ariumi Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection , 2021, bioRxiv.

[25]  I. Ahel,et al.  ADP-ribosylation of DNA and RNA , 2021, DNA repair.

[26]  Anthony R. Fehr,et al.  Unique Mutations in the Murine Hepatitis Virus Macrodomain Differentially Attenuate Virus Replication, Indicating Multiple Roles for the Macrodomain in Coronavirus Replication , 2021, Journal of virology.

[27]  X. Li,et al.  Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells , 2021, Nature Communications.

[28]  B. Lüscher,et al.  ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function , 2021, Nucleic acids research.

[29]  M. Niepel,et al.  A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants. , 2021, Cell chemical biology.

[30]  I. Ahel,et al.  Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential , 2020, Open Biology.

[31]  George-Lucian Moldovan,et al.  Genome-wide CRISPR synthetic lethality screen identifies a role for the ADP-ribosyltransferase PARP14 in DNA replication dynamics controlled by ATR , 2020, Nucleic acids research.

[32]  Nadezhda T. Doncheva,et al.  Visualize omics data on networks with Omics Visualizer, a Cytoscape App , 2020, F1000Research.

[33]  I. Ahel,et al.  (ADP-ribosyl)hydrolases: structure, function, and biology , 2020, Genes & development.

[34]  I. Ahel,et al.  HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation , 2020, Nature.

[35]  S. Perlman,et al.  The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression , 2019, PLoS pathogens.

[36]  Michael S. Cohen,et al.  Reversible ADP-ribosylation of RNA , 2019, Nucleic acids research.

[37]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[38]  Michael S. Cohen,et al.  Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14). , 2018, ACS chemical biology.

[39]  D. Filippov,et al.  Synthetic α- and β-Ser-ADP-ribosylated Peptides Reveal α-Ser-ADPr as the Native Epimer , 2018, Organic letters.

[40]  H. Schüler,et al.  Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14. , 2018, Bioorganic & medicinal chemistry letters.

[41]  G. Natoli,et al.  PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN–Inducible Proteins , 2018, The Journal of Immunology.

[42]  I. Ahel,et al.  MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria , 2018, Front. Microbiol..

[43]  I. Matic,et al.  Specificity of reversible ADP-ribosylation and regulation of cellular processes , 2018, Critical reviews in biochemistry and molecular biology.

[44]  I. Ahel,et al.  Reversible mono‐ADP‐ribosylation of DNA breaks , 2017, The FEBS journal.

[45]  S. Knapp,et al.  Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. , 2017, ACS chemical biology.

[46]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[47]  I. Matic,et al.  Serine ADP-ribosylation reversal by the hydrolase ARH3 , 2017, eLife.

[48]  K. Saikatendu,et al.  Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation. , 2017, Biochemical and biophysical research communications.

[49]  I. Matic,et al.  Serine ADP-Ribosylation Depends on HPF1 , 2017, Molecular cell.

[50]  Tobias Karlberg,et al.  Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. , 2017, Journal of medicinal chemistry.

[51]  D. Filippov,et al.  ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence , 2017, Proceedings of the National Academy of Sciences.

[52]  Ziying Liu,et al.  PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes , 2017, Genes & development.

[53]  I. Ahel,et al.  The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA , 2016, Molecular cell.

[54]  Jincun Zhao,et al.  The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection , 2016, mBio.

[55]  Catherine Chapuis,et al.  The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage , 2016, Molecular biology of the cell.

[56]  A. Barabasi,et al.  PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation , 2016, Nature Communications.

[57]  I. Matic,et al.  Serine is a new target residue for endogenous ADP-ribosylation on histones , 2016, Nature chemical biology.

[58]  D. Gasparutto,et al.  Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro , 2016, Nucleic acids research.

[59]  B. Coutard,et al.  Viral Macro Domains Reverse Protein ADP-Ribosylation , 2016, Journal of Virology.

[60]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[61]  I. Ahel,et al.  HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity , 2016, Molecular cell.

[62]  M. Altmeyer,et al.  Readers of poly(ADP-ribose): designed to be fit for purpose , 2015, Nucleic acids research.

[63]  M. Holtzman,et al.  PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection , 2015, Nature Immunology.

[64]  Salvatore Papa,et al.  PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation , 2015, Nature Communications.

[65]  S. Akira,et al.  Role of zinc-finger anti-viral protein in host defense against Sindbis virus. , 2015, International immunology.

[66]  Qi Zhao,et al.  IBS: an illustrator for the presentation and visualization of biological sequences , 2015, Bioinform..

[67]  K. Myung,et al.  A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress , 2015, Nucleic acids research.

[68]  F. Bock,et al.  RNA regulation by Poly(ADP-ribose) polymerases , 2015, Molecular cell.

[69]  Toni I. Gossmann,et al.  Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism , 2014, DNA repair.

[70]  J. Pruneda,et al.  Allosteric Activation of the RNF146 Ubiquitin Ligase by a Poly(ADP-ribosyl)ation Signal , 2014, Nature.

[71]  I. Matic,et al.  Family-wide analysis of poly(ADP-ribose) polymerase activity , 2014, Nature Communications.

[72]  P. Hassa,et al.  DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells , 2014, Molecular Cancer.

[73]  Janet M. Young,et al.  Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts , 2014, PLoS genetics.

[74]  L. Zou,et al.  PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. , 2014, Molecular cell.

[75]  Michael L Nielsen,et al.  Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. , 2013, Molecular cell.

[76]  I. Matic,et al.  Deficiency of terminal ADP‐ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease , 2013, The EMBO journal.

[77]  A. Caflisch,et al.  Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases , 2013, Nature Structural &Molecular Biology.

[78]  Martin Zacharias,et al.  A family of macrodomain proteins reverses cellular mono-ADP-ribosylation , 2013, Nature Structural &Molecular Biology.

[79]  Bianca Nijmeijer,et al.  Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. , 2013, Structure.

[80]  M. Shipp,et al.  BAL1 and Its Partner E3 Ligase, BBAP, Link Poly(ADP-Ribose) Activation, Ubiquitylation, and Double-Strand DNA Repair Independent of ATM, MDC1, and RNF8 , 2012, Molecular and Cellular Biology.

[81]  J. Pascal,et al.  Structural Basis for DNA Damage–Dependent Poly(ADP-ribosyl)ation by Human PARP-1 , 2012, Science.

[82]  Yong-tang Zheng,et al.  Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation , 2011, Proceedings of the National Academy of Sciences.

[83]  John M Denu,et al.  Identification of Macrodomain Proteins as Novel O-Acetyl-ADP-ribose Deacetylases* , 2011, The Journal of Biological Chemistry.

[84]  S. Goenka,et al.  PARP-14 Functions as a Transcriptional Switch for Stat6-dependent Gene Activation* , 2010, The Journal of Biological Chemistry.

[85]  R. Lafyatis,et al.  Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. , 2010, The Journal of investigative dermatology.

[86]  R. Lahesmaa,et al.  PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. , 2009, Blood.

[87]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[88]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[89]  Stephen C. West,et al.  Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins , 2008, Nature.

[90]  Michael Emerman,et al.  Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein , 2008, PLoS genetics.

[91]  M. J. Bick,et al.  Inhibition of Filovirus Replication by the Zinc Finger Antiviral Protein , 2006, Journal of Virology.

[92]  M. Boothby,et al.  Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[93]  M. Bycroft,et al.  The macro domain is an ADP‐ribose binding module , 2004, The EMBO journal.

[94]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[95]  S. Goff,et al.  Inhibition of Retroviral RNA Production by ZAP, a CCCH-Type Zinc Finger Protein , 2002, Science.

[96]  G. Poirier,et al.  Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. , 1999, The Biochemical journal.

[97]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[98]  J. Moss,et al.  Reversibility of arginine-specific mono(ADP-ribosyl)ation: identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[99]  N. Bhattacharyya,et al.  Suppression of N-methyl-N'-nitro-N-nitrosoguanidine-induced mutation in Chinese hamster V79 cells by inhibition of poly(ADP-ribose)polymerase activity. , 1983, Mutation research.

[100]  I. Ahel,et al.  A Simple Method to Study ADP-Ribosylation Reversal: From Function to Drug Discovery. , 2023, Methods in molecular biology.

[101]  M. L. Nielsen,et al.  Characterizing ADP-Ribosylation Sites Using Af1521 Enrichment Coupled to ETD-Based Mass Spectrometry. , 2023, Methods in molecular biology.

[102]  N. Saito The neighbor-joining method : A new method for reconstructing phylogenetic trees , 1987 .

[103]  A. W. E. E. K. L. Y. J. O U R N A L D E V O T E D T O T H E A D V A N C E,et al.  S C I E N C E , 2022 .