EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES

This Letter outlines a simple approach to evaluate habitability of terrestrial planets by assuming different types of planetary atmospheres and using corresponding model calculations. Our approach can be applied for current and future candidates provided by the Kepler mission and other searches. The resulting uncertainties and changes in the number of planetary candidates in the HZ for the Kepler 2011 February data release are discussed. To first order, the HZ depends on the effective stellar flux distribution in wavelength and time, the planet albedo, and greenhouse gas effects. We provide a simple set of parameters which can be used for evaluating future planet candidates from transit searches.

[1]  M. H. Hart,et al.  Habitable zones about main sequence stars , 1979 .

[2]  D. Pollard,et al.  Earth-like worlds on eccentric orbits: excursions beyond the habitable zone , 2002, International Journal of Astrobiology.

[3]  F Forget,et al.  Warming early Mars with carbon dioxide clouds that scatter infrared radiation. , 1997, Science.

[4]  H. Rauer,et al.  Clouds in the atmospheres of extrasolar planets - I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones , 2010, 1002.2927.

[5]  P. Mauas,et al.  Ultraviolet radiation constraints around the circumstellar habitable zones , 2005, astro-ph/0512291.

[6]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[7]  Robert M. Haberle,et al.  Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability☆ , 1997 .

[8]  K. Menou,et al.  HABITABLE CLIMATES: THE INFLUENCE OF OBLIQUITY , 2008, 0807.4180.

[9]  W. von Bloh,et al.  The habitability of super-Earths in Gliese 581 , 2007, 0705.3758.

[10]  D. Pollard,et al.  Atmospheric circulations of terrestrial planets orbiting low-mass stars , 2011 .

[11]  L. Kaltenegger CHARACTERIZING HABITABLE EXOMOONS , 2009, 0912.3484.

[12]  V. Eymet,et al.  Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling , 2010, 1005.5098.

[13]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[14]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[15]  H. Rauer,et al.  Warming the early earth—CO2 reconsidered , 2008, 0804.4134.

[16]  J. Kasting,et al.  Habitable moons around extrasolar giant planets , 1997, Nature.

[17]  Manoj Joshi,et al.  Climate model studies of synchronously rotating planets. , 2003, Astrobiology.

[18]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[19]  H. Durand-Manterola,et al.  Possible biotic distribution in our galaxy , 2004 .

[20]  S. Huang Life Outside the Solar System , 1960 .

[21]  C. Bergh,et al.  The Runaway Greenhouse and the Accumulation of CO2 in the Venus Atmosphere , 1970, Nature.

[22]  Charles S. Cockell,et al.  Emergence of a Habitable Planet , 2007 .

[23]  David M. Kipping,et al.  On the detectability of habitable exomoons with Kepler-class photometry , 2009, 0907.3909.

[24]  M. Rosing Thermodynamics of life on the planetary scale , 2005, International Journal of Astrobiology.

[25]  M. H. Hart,et al.  The evolution of the atmosphere of the earth , 1978 .

[26]  J. Kasting,et al.  Influence of carbon dioxide clouds on early martian climate. , 2000, Icarus.

[27]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[28]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.