Relating Estrada index with spectral radius
暂无分享,去创建一个
Toufik Mansour | Matthias Schork | Boris Furtula | Ivan Gutman | I. Gutman | T. Mansour | S. Radenković | Boris Furtula | M. Schork | Slavko Radenković
[1] I. Gutman,et al. Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .
[2] George G. Hall. The evaluation of moments for polycyclic hydrocarbons , 1986 .
[3] I. Gutman,et al. Mathematical Concepts in Organic Chemistry , 1986 .
[4] D. Cvetkovic,et al. The largest eigenvalue of a graph: A survey , 1990 .
[5] Ivan Gutman,et al. Dependence of spectral moments of benzenoid hydrocarbons on molecular structure , 1991 .
[6] S. Markovic,et al. The evaluation of the eighth moment for benzenoid graphs , 1992 .
[7] D. Cvetkovic,et al. Spectra of Graphs: Theory and Applications , 1997 .
[8] Svetlana Marković,et al. The evaluation of spectral moments for molecular graphs of phenylenes , 1997 .
[9] Svetlana Markovic,et al. Tenth Spectral Moment for Molecular Graphs of Phenylenes , 1999, J. Chem. Inf. Comput. Sci..
[10] Ernesto Estrada. Characterization of 3D molecular structure , 2000 .
[11] Svetlana Markovic,et al. Spectral Moments of Phenylenes , 2001, J. Chem. Inf. Comput. Sci..
[12] Dieter Rautenbach,et al. Wiener index versus maximum degree in trees , 2002, Discret. Appl. Math..
[13] Ivan Gutman,et al. Two early branching indices and the relation between them , 2002 .
[14] Ernesto Estrada,et al. Characterization of the folding degree of proteins , 2002, Bioinform..
[15] Ernesto Estrada. Characterization of the amino acid contribution to the folding degree of proteins , 2004, Proteins.
[16] J. A. Rodríguez-Velázquez,et al. Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] J. A. Rodríguez-Velázquez,et al. Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] J. A. Rodríguez-Velázquez,et al. Atomic branching in molecules , 2006 .
[19] Ernesto Estrada. Topological structural classes of complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.