Microbial regulation of microRNA expression in the amygdala and prefrontal cortex

[1]  Nicolas Singewald,et al.  MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice , 2017, Biological Psychiatry.

[2]  T. Dinan,et al.  The microbiome regulates amygdala-dependent fear recall , 2017, Molecular Psychiatry.

[3]  P. Xie,et al.  Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice , 2017, Behavioural Brain Research.

[4]  S. Haggarty,et al.  Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future , 2017, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[5]  T. Dinan,et al.  Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat , 2016, Neuroscience.

[6]  T. Dinan,et al.  Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. , 2016, Journal of psychiatric research.

[7]  T. Dinan,et al.  The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? , 2016, Neurochemistry International.

[8]  A. Jačan,et al.  Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication , 2016, Brain, Behavior, and Immunity.

[9]  John F. Cryan,et al.  May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut–Brain Axis in Neuropsychiatry , 2016, CNS Drugs.

[10]  John F. Cryan,et al.  Adult microbiota‐deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus , 2016, The European journal of neuroscience.

[11]  F. Bäckhed,et al.  From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites , 2016, Cell.

[12]  J Licinio,et al.  Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism , 2016, Molecular Psychiatry.

[13]  A. Fischer,et al.  Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. , 2016, Cell reports.

[14]  J. Walter,et al.  Human Microbiota-Associated Mice: A Model with Challenges. , 2016, Cell host & microbe.

[15]  J. Clemente,et al.  Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior , 2016, eLife.

[16]  T. Dinan,et al.  Regulation of prefrontal cortex myelination by the microbiota , 2016, Translational Psychiatry.

[17]  T. Dinan,et al.  Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior , 2016, The international journal of neuropsychopharmacology.

[18]  D. Bannerman,et al.  Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice , 2016, Brain, Behavior, and Immunity.

[19]  A. K. Hansen,et al.  Antibiotic-treated versus germ-free rodents for microbiota transplantation studies , 2016, Gut microbes.

[20]  H. Forssberg,et al.  Host microbiota modulates development of social preference in mice , 2015, Microbial ecology in health and disease.

[21]  T. Dinan,et al.  Microbes & neurodevelopment – Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala , 2015, Brain, Behavior, and Immunity.

[22]  T. Abel,et al.  MicroRNAs as biomarkers of resilience or vulnerability to stress , 2015, Neuroscience.

[23]  K. Tye,et al.  Resolving the neural circuits of anxiety , 2015, Nature Neuroscience.

[24]  J. Homberg,et al.  Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism , 2015, Neurobiology of Disease.

[25]  John F. Cryan,et al.  Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour , 2015, Brain, Behavior, and Immunity.

[26]  T. Dinan,et al.  Thinking small: towards microRNA-based therapeutics for anxiety disorders , 2015, Expert opinion on investigational drugs.

[27]  Jeroen Raes,et al.  How informative is the mouse for human gut microbiota research? , 2015, Disease Models & Mechanisms.

[28]  T. Dinan,et al.  Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? , 2014, Front. Cell. Infect. Microbiol..

[29]  T. Dinan,et al.  Microbiota and neurodevelopmental windows: implications for brain disorders. , 2014, Trends in molecular medicine.

[30]  B. Dias,et al.  Amygdala-Dependent Fear Memory Consolidation via miR-34a and Notch Signaling , 2014, Neuron.

[31]  Robert C. Thompson,et al.  Basal microRNA expression patterns in reward circuitry of selectively bred high-responder and low-responder rats vary by brain region and genotype. , 2014, Physiological genomics.

[32]  M. Heilig,et al.  microRNA-206 in Rat Medial Prefrontal Cortex Regulates BDNF Expression and Alcohol Drinking , 2014, The Journal of Neuroscience.

[33]  Yan Zhang,et al.  MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease , 2014, Neuroscience Bulletin.

[34]  J. Cryan,et al.  Microbial genes, brain & behaviour – epigenetic regulation of the gut–brain axis , 2014, Genes, brain, and behavior.

[35]  J. Petrosino,et al.  Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders , 2013, Cell.

[36]  L. Milanesi,et al.  Blood microRNA changes in depressed patients during antidepressant treatment , 2013, European Neuropsychopharmacology.

[37]  P. Scully,et al.  The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner , 2013, Molecular Psychiatry.

[38]  L. Desbonnet,et al.  Microbiota is essential for social development in the mouse , 2013, Molecular Psychiatry.

[39]  J. Foster,et al.  Gut–brain axis: how the microbiome influences anxiety and depression , 2013, Trends in Neurosciences.

[40]  G. Marimuthu,et al.  Environmental enrichment upregulates micro‐RNA‐183 and alters acetylcholinesterase splice variants to reduce anxiety‐like behavior in the little Indian field mouse (Mus booduga) , 2013, Journal of neuroscience research.

[41]  Gavin Rumbaugh,et al.  MicroRNA-182 Regulates Amygdala-Dependent Memory Formation , 2013, The Journal of Neuroscience.

[42]  Mu-ming Poo,et al.  Neurotrophin regulation of neural circuit development and function , 2012, Nature Reviews Neuroscience.

[43]  T. Dinan,et al.  Mind-altering Microorganisms: the Impact of the Gut Microbiota on Brain and Behaviour , 2022 .

[44]  J. Roh,et al.  miR‐206 regulates brain‐derived neurotrophic factor in Alzheimer disease model , 2012, Annals of neurology.

[45]  A. Etkin NEUROBIOLOGY OF ANXIETY: FROM NEURAL CIRCUITS TO NOVEL SOLUTIONS? , 2012, Depression and anxiety.

[46]  P. Kenny,et al.  MicroRNAs in neuronal function and dysfunction , 2012, Trends in Neurosciences.

[47]  John F. Cryan,et al.  Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve , 2011, Proceedings of the National Academy of Sciences.

[48]  K. McCoy,et al.  The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. , 2011, Gastroenterology.

[49]  J. Foster,et al.  Effects of intestinal microbiota on anxiety-like behavior. , 2011, Communicative & integrative biology.

[50]  I. Liberzon,et al.  The Neurocircuitry of Fear, Stress, and Anxiety Disorders , 2011, Neuropsychopharmacology.

[51]  Aldert L. Zomer,et al.  Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor , 2011, Proceedings of the National Academy of Sciences.

[52]  J. Foster,et al.  Reduced anxiety‐like behavior and central neurochemical change in germ‐free mice , 2011, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[53]  H. Forssberg,et al.  Normal gut microbiota modulates brain development and behavior , 2011, Proceedings of the National Academy of Sciences.

[54]  D. Kaufer,et al.  Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions , 2009, Journal of Molecular Neuroscience.

[55]  Andrew Holmes,et al.  Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease , 2008, Neuroscience & Biobehavioral Reviews.

[56]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[57]  Y. Chida,et al.  Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice , 2004, The Journal of physiology.

[58]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[59]  J. Bienenstock,et al.  Vagal pathways for microbiome-brain-gut axis communication. , 2014, Advances in experimental medicine and biology.

[60]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[61]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .