Superconvergence of High Order Finite Difference Schemes Based on Variational Formulation for Elliptic Equations
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[2] Mary F. Wheeler,et al. An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials , 1974 .
[3] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[4] Xiangxiong Zhang,et al. Superconvergence of C0-Qk Finite Element Method for Elliptic Equations with Approximated Coefficients , 2019, J. Sci. Comput..
[5] M. Zlámal,et al. Superconvergence of the gradient of finite element solutions , 1979 .
[6] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[7] Xiangxiong Zhang,et al. On the monotonicity and discrete maximum principle of the finite difference implementation of \(C^0\) - \(Q^2\) finite element method , 2019, Numerische Mathematik.
[8] LAGRANGIAN FINITE ELEMENT and FINITE DIFFERENCE METHODS FOR POISSON PROBLEMS. , 1975 .
[9] Giuseppe Savaré,et al. Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .
[10] Ludmil T. Zikatanov,et al. Algebraic multigrid methods * , 2016, Acta Numerica.
[11] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[12] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[13] M. Bakker. A note onCo Galerkin methods for two-point boundary problems , 1982 .
[14] Jinchao Xu,et al. Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..