Superconvergence of High Order Finite Difference Schemes Based on Variational Formulation for Elliptic Equations

The classical continuous finite element method with Lagrangian $$Q^k$$ Q k basis reduces to a finite difference scheme when all the integrals are replaced by the $$(k+1)\times (k+1)$$ ( k + 1 ) × ( k + 1 ) Gauss–Lobatto quadrature. We prove that this finite difference scheme is $$(k+2)$$ ( k + 2 ) th order accurate in the discrete 2-norm for an elliptic equation with Dirichlet boundary conditions, which is a superconvergence result of function values. We also give a convenient implementation for the case $$k=2$$ k = 2 , which is a simple fourth order accurate elliptic solver on a rectangular domain.

[1]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[2]  Mary F. Wheeler,et al.  An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials , 1974 .

[3]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[4]  Xiangxiong Zhang,et al.  Superconvergence of C0-Qk Finite Element Method for Elliptic Equations with Approximated Coefficients , 2019, J. Sci. Comput..

[5]  M. Zlámal,et al.  Superconvergence of the gradient of finite element solutions , 1979 .

[6]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[7]  Xiangxiong Zhang,et al.  On the monotonicity and discrete maximum principle of the finite difference implementation of \(C^0\) - \(Q^2\) finite element method , 2019, Numerische Mathematik.

[8]  LAGRANGIAN FINITE ELEMENT and FINITE DIFFERENCE METHODS FOR POISSON PROBLEMS. , 1975 .

[9]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[10]  Ludmil T. Zikatanov,et al.  Algebraic multigrid methods * , 2016, Acta Numerica.

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[13]  M. Bakker A note onCo Galerkin methods for two-point boundary problems , 1982 .

[14]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..