Camera re-calibration after zooming based on sets of conics

We describe a method to compute the internal parameters (focal and principal point) of a camera with known position and orientation, based on the observation of two or more conics on a known plane. The conics can even be degenerate (e.g., pairs of lines). The proposed method can be used to re-estimate the internal parameters of a fully calibrated camera after zooming to a new, unknown, focal length. It also allows estimating the internal parameters when a second, fully calibrated camera observes the same conics. The parameters estimated through the proposed method are coherent with the output of more traditional procedures that require a higher number of calibration images. A deep analysis of the geometrical configurations that influence the proposed method is also reported.

[1]  Sergio A. Velastin,et al.  Intelligent distributed surveillance systems: a review , 2005 .

[2]  N. Alberto Borghese,et al.  Computing camera focal length by zooming a single point , 2006, Pattern Recognit..

[3]  Andrew W. Fitzgibbon,et al.  A Buyer's Guide to Conic Fitting , 1995, BMVC.

[4]  Hongbin Zha,et al.  Camera Calibration Using Principal-Axes Aligned Conics , 2007, ACCV.

[5]  F. Pedersini,et al.  Autocalibration of Triaxial MEMS Accelerometers With Automatic Sensor Model Selection , 2012, IEEE Sensors Journal.

[6]  Clive S. Fraser,et al.  Zoom-dependent camera calibration in digital close-range photogrammetry , 2006 .

[7]  Enrico Calore,et al.  Accelerometer-based correction of skewed horizon and keystone distortion in digital photography , 2014, Image Vis. Comput..

[8]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[9]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[10]  Kari Pulli,et al.  FCam for multiple cameras , 2012, Electronic Imaging.

[11]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems (2nd ed.) , 2004 .

[12]  Jie Zhou,et al.  Stereo vision using two PTZ cameras , 2008, Comput. Vis. Image Underst..

[13]  Xiao Lu,et al.  A new method for camera stratified self-calibration under circular motion , 2012, The Visual Computer.

[14]  Sergio A. Velastin,et al.  A Review of Computer Vision Techniques for the Analysis of Urban Traffic , 2011, IEEE Transactions on Intelligent Transportation Systems.

[15]  I. Frosio,et al.  Accelerometer based horizon and keystone perspective correction , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[16]  Zhengyou Zhang,et al.  Flexible camera calibration by viewing a plane from unknown orientations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Aly A. Farag,et al.  Zoom-lens Camera Calibration From Noisy Data With Outliers , 2000, BMVC.

[18]  Francisco Abad,et al.  Camera Calibration Using Two Concentric Circles , 2004, ICIAR.

[19]  Gaurav Sharma,et al.  Plane-based calibration of cameras with zoom variation , 2006, Electronic Imaging.

[20]  Ping Lu,et al.  A camera on-line recalibration framework using SIFT , 2010, The Visual Computer.

[21]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[22]  Carlo Tomasi Camera Calibration , 2002 .

[23]  Ian Reid,et al.  Self-calibration of rotating and zooming cameras (vol 45, pg 107, 2001) , 2002 .

[24]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[25]  Jizhou Sun,et al.  Simple zoom-lens digital camera calibration method based on EXIF , 2004, IS&T/SPIE Electronic Imaging.

[26]  Zhanyi Hu,et al.  Planar conic based camera calibration , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[27]  Anders Heyden,et al.  Using conic correspondences in two images to estimate the epipolar geometry , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[28]  Iuri Frosio,et al.  Linear pose estimate from corresponding conics , 2012, Pattern Recognit..