Stable Matchings with Covering Constraints: A Complete Computational Trichotomy

Stable matching problems with lower quotas are fundamental in academic hiring and ensuring operability of rural hospitals. Only few tractable (polynomial-time solvable) cases of stable matching with lower quotas have been identified; most such problems are $$\mathsf {NP}$$ NP -hard and also hard to approximate (Hamada et al. in Algorithmica 74(1):440–465, 2016). We therefore consider stable matching problems with lower quotas under a relaxed notion of tractability, namely fixed-parameter tractability. By cloning hospitals we focus on the case when all hospitals have upper quota equal to 1, which generalizes the setting of “arranged marriages” first considered by Knuth (Mariages stables et leurs relations avec d’autres problèmes combinatoires, Les Presses de l’Université de Montréal, Montreal, 1976). We investigate how a set of natural parameters, namely the maximum length of preference lists for men and women, the number of distinguished men and women, and the number of blocking pairs allowed determine the computational tractability of this problem. Our main result is a complete complexity trichotomy: for each choice of parameters we either provide a polynomial-time algorithm, or an $$\mathsf {NP}$$ NP -hardness proof and fixed-parameter algorithm, or $$\mathsf {NP}$$ NP -hardness proof and $$\mathsf {W}[1]$$ W [ 1 ] -hardness proof. As corollary, we negatively answer a question by Hamada et al. (Algorithmica 74(1):440–465, 2016) by showing fixed-parameter intractability parameterized by optimal solution size. We also classify all cases of one-sided constraints where only women may be distinguished.

[1]  David Manlove,et al.  Algorithmics of Matching Under Preferences , 2013, Bull. EATCS.

[2]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[3]  Chien-Chung Huang,et al.  Classified stable matching , 2009, SODA '10.

[4]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[5]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[6]  Parag A. Pathak,et al.  Matching with Couples: Stability and Incentives in Large Markets , 2010 .

[7]  Donald E. Knuth Mariages stables et leurs relations avec d'autres problèmes combinatoires : introduction à l'analyse mathématique des algorithmes , 1976 .

[8]  Leo Võhandu,et al.  Stable marriage problem and college admission , 2005 .

[9]  A. Roth,et al.  The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design , 1999, The American economic review.

[10]  Yu Yokoi,et al.  A Generalized Polymatroid Approach to Stable Matchings with Lower Quotas , 2017, Math. Oper. Res..

[11]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[12]  David Manlove,et al.  Stable Marriage with Ties and Bounded Length Preference Lists , 2006, ACiD.

[13]  Dániel Marx,et al.  Parameterized Complexity and Local Search Approaches for the Stable Marriage Problem with Ties , 2009, Algorithmica.

[14]  Makoto Yokoo,et al.  Strategyproof Matching with Minimum Quotas , 2016, TEAC.

[15]  David Manlove,et al.  Stable Marriage and Roommates problems with restricted edges: Complexity and approximability , 2016, Discret. Optim..

[16]  Matthias Mnich,et al.  Stable Marriage with Covering Constraints-A Complete Computational Trichotomy , 2016, SAGT.

[17]  Katarína Cechlárová,et al.  Pareto optimal matchings with lower quotas , 2017, Math. Soc. Sci..

[18]  Eric McDermid,et al.  "Almost stable" matchings in the Roommates problem with bounded preference lists , 2012, Theor. Comput. Sci..

[19]  R. Colker Marriage , 1955 .

[20]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[21]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[22]  Makoto Yokoo,et al.  Strategyproof matching with regional minimum and maximum quotas , 2016, Artif. Intell..

[23]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[24]  David Manlove,et al.  Efficient algorithms for generalized Stable Marriage and Roommates problems , 2007, Theor. Comput. Sci..

[25]  Celina M. H. de Figueiredo,et al.  The stable marriage problem with restricted pairs , 2003, Theor. Comput. Sci..

[26]  Robert W. Irving,et al.  Stable matching with couples: An empirical study , 2011, JEAL.

[27]  Tamás Fleiner,et al.  A Matroid Approach to Stable Matchings with Lower Quotas , 2012, Math. Oper. Res..

[28]  W. Marsden I and J , 2012 .

[29]  Toby Walsh,et al.  Control of Fair Division , 2016, IJCAI.

[30]  David Manlove,et al.  Matchings with Lower Quotas: Algorithms and Complexity , 2014, Algorithmica.

[31]  Harry R. Lewis,et al.  Review of "Mariages stables et leur relations avec d'autre problèmes combinatoires: introduction à l'analyze mathématique des algorithmes" by Donald E. Knuth. Les Presses de l'Université de Montréal. , 1978, SIGA.

[32]  Isa Emin Hafalir,et al.  School Choice with Controlled Choice Constraints: Hard Bounds Versus Soft Bounds , 2011, J. Econ. Theory.

[33]  Daniel Monte,et al.  Matching with quorums , 2013 .

[34]  David Manlove,et al.  Stable Marriage and Roommates Problems with Restricted Edges: Complexity and Approximability , 2014, SAGT.

[35]  Peter Troyan,et al.  Improving matching under hard distributional constraints: Improving matching under constraints , 2017 .

[36]  Vincent Conitzer,et al.  Handbook of Computational Social Choice , 2016 .

[37]  Alexander Westkamp An analysis of the German university admissions system , 2013 .

[38]  Peter Troyan,et al.  Improving Matching under Hard Distributional Constraints , 2015 .

[39]  Shuichi Miyazaki,et al.  The Hospitals/Residents Problem with Lower Quotas , 2014, Algorithmica.

[40]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[41]  Naoyuki Kamiyama A note on the serial dictatorship with project closures , 2013, Oper. Res. Lett..

[42]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[43]  Dániel Marx,et al.  Stable assignment with couples: Parameterized complexity and local search , 2009, Discret. Optim..

[44]  Haris Aziz,et al.  On the Susceptibility of the Deferred Acceptance Algorithm , 2015, AAMAS.

[45]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[46]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[47]  Yu Yokoi,et al.  Envy-Free Matchings with Lower Quotas , 2017, Algorithmica.

[48]  Scott Duke Kominers,et al.  Matching with Slot-Specific Priorities: Theory , 2016 .

[49]  Nicole Immorlica,et al.  Marriage, honesty, and stability , 2005, SODA '05.

[50]  David Gale,et al.  Some remarks on the stable matching problem , 1985, Discret. Appl. Math..

[51]  David Manlove,et al.  The College Admissions problem with lower and common quotas , 2010, Theor. Comput. Sci..