Evaluation of restricted probabilistic cellular automata on the exploration of the potential energy surface of Be6B11−

Herein the performance of a modification within the hybrid algorithm implemented in the AUTOMATON program is introduced and evaluated. For the creation of the initial population, AUTOMATON combines a probabilistic automata procedure with a genetic algorithm used to evolve this population. The proposed modification is addressed to efficiently identify the minimum energy structures of systems composed of more than one type of atom and with a low computational cost. The effectiveness of this approach is evaluated in the determination of the minimum energy structures of Be6B11−. The modification, aimed to explore the potential energy surface, consisted of filling the cells first with Be atoms in the process of creating the initial population. This order obeys the structural pattern established in the Be–B clusters reported to date. The results show that this variation not only identifies a more significant number of viable isomers but also to find a better putative global minimum than those previously reported in the literature. Therefore, it is recommended to be used as a complement to the standard searching process.

[1]  Gabriel Merino,et al.  Li2 B12 and Li3 B12 : Prediction of the Smallest Tubular and Cage-like Boron Structures. , 2018, Angewandte Chemie.

[2]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Dmitry Yu. Zubarev,et al.  Global minimum structure searches via particle swarm optimization , 2007, J. Comput. Chem..

[4]  Jack B A Davis,et al.  The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of Ir(N) (N = 10-20) clusters. , 2015, Nanoscale.

[5]  H. Schaber,et al.  Electronic shell structure in NaO clusters , 1989 .

[6]  J. Oscar C. Jiménez-Halla,et al.  B19-: an aromatic Wankel motor. , 2010, Angewandte Chemie.

[7]  Jorge Garza,et al.  AUTOMATON: A Program That Combines a Probabilistic Cellular Automata and a Genetic Algorithm for Global Minimum Search of Clusters and Molecules. , 2018, Journal of chemical theory and computation.

[8]  Clemence Corminboeuf,et al.  Identifying clusters as low‐lying mimina—efficiency of stochastic and genetic algorithms using inexpensive electronic structure levels , 2012, J. Comput. Chem..

[9]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[10]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[11]  Joshua Jortner,et al.  Clusters as a Key to the Understanding of Properties as a Function of Size and Dimensionality , 1992 .

[12]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[13]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[14]  Lei Liu,et al.  Dynamical behavior of boron clusters. , 2016, Nanoscale.

[15]  N. T. Hoai-Phuong,et al.  Optimization under Composite Monotonic Constraints and Constrained Optimization over the Efficient Set , 2006 .

[16]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[17]  Wei Huang,et al.  Carbon avoids hypercoordination in CB6(-), CB6(2-), and C2B5(-) planar carbon-boron clusters. , 2008, Journal of the American Chemical Society.

[18]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[19]  William Tiznado,et al.  (Li6 Si5 )2-5 : The Smallest Cluster-Assembled Materials Based on Aromatic Si5 6- Rings. , 2019, Chemistry.

[20]  Gabriel Merino,et al.  Structure and Bonding in CE5- (E=Al-Tl) Clusters: Planar Tetracoordinate Carbon versus Pentacoordinate Carbon. , 2018, Chemistry, an Asian journal.

[21]  Patricio Fuentealba,et al.  Topological Analysis of the Fukui Function. , 2010, Journal of chemical theory and computation.

[22]  Zheng Yang,et al.  The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. , 2014, The Review of scientific instruments.

[23]  Jun Li,et al.  TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm , 2017, Nano Research.

[24]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[26]  K. Wade,et al.  Structural and Bonding Patterns in Cluster Chemistry , 1976 .

[27]  William Tiznado,et al.  Carbon rings decorated with group 14 elements: new aromatic clusters containing planar tetracoordinate carbon , 2019, New Journal of Chemistry.

[28]  Gabriel Merino,et al.  B10M2 (M = Rh, Ir): finally a stable boron-based icosahedral cluster. , 2019, Chemical communications.

[29]  Kelling J. Donald,et al.  Planar pentacoordinate carbons , 2018 .

[30]  M. Saunders Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum , 1987 .

[31]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[32]  Gabriel Merino,et al.  Exploiting electronic strategies to stabilize a planar tetracoordinate carbon in cyclic aromatic hydrocarbons. , 2017, Chemical communications.

[33]  William Tiznado,et al.  Stop rotating! One substitution halts the B19₁₉⁻ motor. , 2014, Chemical communications.

[34]  Shamik Sural,et al.  Modified Particle Swarm Optimization Algorithms for the Generation of Stable Structures of Carbon Clusters, Cn (n = 3–6, 10) , 2019, Front. Chem..

[35]  Bernd Hartke Global geometry optimization of clusters using a growth strategy optimized by a genetic algorithm , 1995 .

[36]  Pratim K. Chattaraj,et al.  B182‐: A Quasi‐Planar Bowl Member of the Wankel Motor Family. , 2014 .

[37]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[38]  Xin Yang,et al.  Structure of the Na(x)Cl(x+1) (-) (x=1-4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. , 2004, The Journal of chemical physics.

[39]  William Tiznado,et al.  Isomerization energy decomposition analysis for highly ionic systems: case study of starlike E5Li7(+) clusters. , 2013, Chemistry.

[40]  R. Johnston,et al.  Global optimization of clusters using electronic structure methods , 2013 .

[41]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[42]  Alexander I Boldyrev,et al.  A concentric planar doubly π-aromatic B₁₉⁻ cluster. , 2010, Nature chemistry.

[43]  A Shayeghi,et al.  Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. , 2015, Physical chemistry chemical physics : PCCP.

[44]  Periodane: A wealth of structural possibilities revealed by the Kick procedure , 2007 .

[45]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[46]  George Maroulis,et al.  Probing the structure and electronic properties of beryllium doped boron clusters: A planar BeB16− cluster motif for metallo-borophene , 2019, Scientific Reports.

[47]  William Tiznado,et al.  Stabilizing carbon-lithium stars. , 2011, Physical chemistry chemical physics : PCCP.

[48]  Jun Li,et al.  Experimental and theoretical investigation of the electronic and geometrical structures of the Au32 cluster. , 2005, Angewandte Chemie.

[49]  Pierre-Yves Louis,et al.  Overview: PCA Models and Issues , 2018 .

[50]  Alexander I Boldyrev,et al.  Aromatic metal-centered monocyclic boron rings: Co©B8- and Ru©B9-. , 2011, Angewandte Chemie.

[51]  Jun Zhang,et al.  Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. , 2016, Physical chemistry chemical physics : PCCP.

[52]  Koblar A. Jackson,et al.  Unraveling the Shape Transformation in Silicon Clusters , 2004 .

[53]  Lai‐Sheng Wang,et al.  Observation of all-metal aromatic molecules. , 2001, Science.

[54]  William Tiznado,et al.  Li7(BH)5(+): a new thermodynamically favored star-shaped molecule. , 2015, Physical chemistry chemical physics : PCCP.

[55]  Peng-Fei Li,et al.  Boron-based binary Be6B102- cluster: three-layered aromatic sandwich, electronic transmutation, and dynamic structural fluxionality. , 2018, Physical chemistry chemical physics : PCCP.

[56]  Thomas Heine,et al.  Fluxional Boron Clusters: From Theory to Reality. , 2019, Accounts of chemical research.

[57]  Gabriel Merino,et al.  Structural evolution of small gold clusters doped by one and two boron atoms , 2014, J. Comput. Chem..

[58]  Lai‐Sheng Wang,et al.  Photoelectron spectroscopy of size‐selected transition metal clusters: Fe−n, n=3–24 , 1995 .

[59]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[60]  Yan Su,et al.  Comprehensive genetic algorithm for ab initio global optimisation of clusters , 2016 .

[61]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[62]  Kelling J. Donald,et al.  cluster: Searching for Unique Low Energy Minima of Structures Using a Novel Implementation of a Genetic Algorithm. , 2014, Journal of chemical theory and computation.

[63]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[64]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[65]  Chang-Qing Miao,et al.  Be2B6 and Be2B7+: two double aromatic inverse sandwich complexes with spin-triplet ground state , 2019, New Journal of Chemistry.

[66]  Pratim K Chattaraj,et al.  B18(2-): a quasi-planar bowl member of the Wankel motor family. , 2014, Chemical communications.

[67]  Sukanta Mondal,et al.  10-π-Electron arenes à la carte: structure and bonding of the [E-(CnHn)-E](n-6) (E = Ca, Sr, Ba; n = 6-8) complexes. , 2016, Physical chemistry chemical physics : PCCP.

[68]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[69]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[70]  Ivan A. Popov,et al.  Understanding Boron Through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality , 2014 .

[71]  William Tiznado,et al.  Exploring the potential energy surface of small lead clusters using the gradient embedded genetic algorithm and an adequate treatment of relativistic effects , 2018 .

[72]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[73]  William Tiznado,et al.  Exploring the Potential Energy Surface of Trimetallic Deltahedral Zintl Ions: Lowest-Energy [Sn6Ge2Bi]3- and [(Sn6Ge2Bi)2]4- Structures. , 2019, Inorganic chemistry.

[74]  Frederick R. Manby,et al.  Application of Genetic Algorithms in Nanoscience: Cluster Geometry Optimization , 2002, EvoWorkshops.

[75]  Matthew A. Addicoat,et al.  Kick: Constraining a stochastic search procedure with molecular fragments , 2009, J. Comput. Chem..

[76]  Hermann Stoll,et al.  Pseudopotentials for main group elements (IIIa through VIIa) , 1988 .

[77]  Gabriel Merino,et al.  Li2B24: the simplest combination for a three-ring boron tube. , 2019, Nanoscale.

[78]  Patricio Fuentealba,et al.  Boron avoids cycloalkane-like structures in the LinBnH2n series , 2016 .

[79]  Boris Averkiev Geometry and Electronic Structure of Doped Clusters via the Coalescence Kick Method , 2009 .

[80]  Gabriel Merino,et al.  Coaxial Triple-Layered versus Helical Be6 B11- Clusters: Dual Structural Fluxionality and Multifold Aromaticity. , 2017, Angewandte Chemie.

[81]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[82]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[83]  Marcela R. Beltrán,et al.  New AuN (N = 27–30) Lowest Energy Clusters Obtained by Means of an Improved DFT–Genetic Algorithm Methodology , 2017 .

[84]  Joaquín Peña,et al.  A hierarchical algorithm for molecular similarity (H‐FORMS) , 2015, J. Comput. Chem..

[85]  Howard R. Mayne,et al.  An investigation of two approaches to basin hopping minimization for atomic and molecular clusters , 1998 .

[86]  Thomas Heine,et al.  Unravelling phenomenon of internal rotation in B13+ through chemical bonding analysis. , 2011, Chemical communications.

[87]  Thomas Heine,et al.  And yet it rotates: the starter for a molecular Wankel motor. , 2012, Angewandte Chemie.

[88]  William Tiznado,et al.  Formation of small clusters of NaCl dihydrate in the gas phase , 2019, New Journal of Chemistry.

[89]  William Tiznado,et al.  E5 M7+ (E=C-Pb, M=Li-Cs): A Source of Viable Star-Shaped Clusters. , 2018, Chemistry, an Asian journal.

[90]  Jesus M. Ugalde,et al.  Designing 3-D molecular stars. , 2009, Journal of the American Chemical Society.