Dynamics of the brain at global and microscopic scales: Neural networks and the EEG

Abstract There is some complementarity of models for the origin of the electroencephalogram (EEG) and neural network models for information storage in brainlike systems. From the EEG models of Freeman, of Nunez, and of the authors' group we argue that the wavelike processes revealed in the EEG exhibit linear and near-equilibrium dynamics at macroscopic scale, despite extremely nonlinear – probably chaotic – dynamics at microscopic scale. Simulations of cortical neuronal interactions at global and microscopic scales are then presented. The simulations depend on anatomical and physiological estimates of synaptic densities, coupling symmetries, synaptic gain, dendritic time constants, and axonal delays. It is shown that the frequency content, wave velocities, frequency/wavenumber spectra and response to cortical activation of the electrocorticogram (ECoG) can be reproduced by a “lumped” simulation treating small cortical areas as single-function units. The corresponding cellular neural network simulation has properties that include those of attractor neural networks proposed by Amit and by Parisi. Within the simulations at both scales, sharp transitions occur between low and high cell firing rates. These transitions may form a basis for neural interactions across scale. To maintain overall cortical dynamics in the normal low firing-rate range, interactions between the cortex and the subcortical systems are required to prevent runaway global excitation. Thus, the interaction of cortex and subcortex via corticostriatal and related pathways may partly regulate global dynamics by a principle analogous to adiabatic control of artificial neural networks.

[1]  N. C. Dimensional Analysis , 1932, Nature.

[2]  D. Sholl Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953, Journal of anatomy.

[3]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[4]  A. M. Uttley The probability of neural connexions , 1955, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[5]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[6]  Bryce S. DeWitt,et al.  Dynamical theory in curved spaces. 1. A Review of the classical and quantum action principles , 1957 .

[7]  D. Purpura The Mammalian Cerebral Cortex , 1958 .

[8]  W. Freeman,et al.  A LINEAR DISTRIBUTED FEEDBACK MODEL FOR PREPYRIFORM CORTEX. , 1964, Experimental neurology.

[9]  R. Stacy,et al.  Computers in biomedical research , 1967 .

[10]  Walter J. Freeman,et al.  Prepyriform electrical activity after loss of peripheral or central input, or both ☆ , 1968 .

[11]  W J Freeman,et al.  Measurement of open-loop responses to electrical stimulation in olfactory bulb of cat. , 1972, Journal of Neurophysiology.

[12]  Shun-ichi Amari,et al.  Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements , 1972, IEEE Transactions on Computers.

[13]  W J Freeman,et al.  Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. , 1972, Journal of neurophysiology.

[14]  G Pfurtscheller,et al.  Frequency dependence of the transmission of the EEG from cortex to scalp. , 1975, Electroencephalography and clinical neurophysiology.

[15]  Robert Miller,et al.  Distribution and properties of commissural and other neurons in cat sensorimotor cortex , 1975, The Journal of comparative neurology.

[16]  W A Little,et al.  A statistical theory of short and long term memory. , 1975, Behavioral biology.

[17]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[18]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[19]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[20]  G. Pfurtscheller Handbook of electroencephalography and clinical neurophysiology , 1978 .

[21]  M. Brazier,et al.  Architectonics of the cerebral cortex , 1978 .

[22]  Roland Heim,et al.  Theoretical Approaches to Complex Systems , 1978 .

[23]  R. Graham,et al.  Path-integral methods in Nonequilibrium Thermodynamics and statistics , 1978 .

[24]  P. Seglar,et al.  Stochastic Processes in Nonequilibrium Systems , 1978 .

[25]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[26]  E. Donchin Presidential address, 1980. Surprise!...Surprise? , 1981, Psychophysiology.

[27]  Lester Ingber,et al.  Towards a unified brain theory , 1981 .

[28]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm , 1982 .

[29]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[30]  E. Tirapegui,et al.  Functional Integration and Semiclassical Expansions , 1982 .

[31]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Ingber Statistical Mechanics of Neocortical Interactions. I. Basic Formulation , 2001 .

[33]  Kuniharu Kishida,et al.  Physical Langevin model and the time-series model in systems far from equilibrium , 1982 .

[34]  J. D. Farmer,et al.  Information Dimension and the Probabilistic Structure of Chaos , 1982 .

[35]  Lester Ingber,et al.  Statistical mechanics of neocortical interactions. Dynamics of synaptic modification , 1983 .

[36]  Ichiro Tsuda,et al.  Noise-induced order , 1983 .

[37]  S. Bressler,et al.  Shadows of thought: shifting lateralization of human brain electrical patterns during brief visuomotor task. , 1983, Science.

[38]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[39]  P Erdi,et al.  Hierarchial thermodynamic approach to the brain. , 1983, The International journal of neuroscience.

[40]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[41]  M. Zhadin Rhythmic processes in the cerebral cortex. , 1984, Journal of theoretical biology.

[42]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Lester Ingber,et al.  Path-integral Riemannian contributions to nuclear Schrödinger equation , 1984 .

[44]  Kuniharu Kishida,et al.  Equivalent random force and time‐series model in systems far from equilibrium , 1984 .

[45]  L. Ingber Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity , 1984 .

[46]  Yoshiki Kuramoto,et al.  Chaos and Statistical Methods , 1984 .

[47]  Lester Ingber,et al.  Statistical mechanics of nonlinear nonequilibrium financial markets , 1984 .

[48]  Noise-Induced Order - Complexity Theoretical Digression , 1984 .

[49]  Ingber,et al.  Statistical mechanics of neocortical interactions: Stability and duration of the 7+/-2 rule of short-term-memory capacity. , 1985, Physical review. A, General physics.

[50]  W. Freeman,et al.  Spatial EEG patterns, non-linear dynamics and perception: the neo-sherringtonian view , 1985, Brain Research Reviews.

[51]  H. Simon,et al.  STM capacity for Chinese words and idioms: Chunking and acoustical loop hypotheses , 1985, Memory & cognition.

[52]  Stanislas Dehaene,et al.  Networks of Formal Neurons and Memory Palimpsests , 1986 .

[53]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[54]  G. Parisi A memory which forgets , 1986 .

[55]  D Kleinfeld,et al.  Sequential state generation by model neural networks. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Parisi,et al.  Asymmetric neural networks and the process of learning , 1986 .

[57]  Françoise Fogelman-Soulié,et al.  Disordered Systems and Biological Organization , 1986, NATO ASI Series.

[58]  R. Thatcher,et al.  Cortico-cortical associations and EEG coherence: a two-compartmental model. , 1986, Electroencephalography and clinical neurophysiology.

[59]  P. Churchland Neurophilosophy: Toward a unified science of the mind , 1989 .

[60]  Ichiro Tsuda,et al.  Memory Dynamics in Asynchronous Neural Networks , 1987 .

[61]  Thomas Elbert,et al.  Threshold regulation - a key to the understanding of the combined dynamics of EEG and event-related potentials , 1987 .

[62]  I. Nebenzahl Recall of associated memories , 1987, Journal of mathematical biology.

[63]  S Dehaene,et al.  Neural networks that learn temporal sequences by selection. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[64]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[65]  Walter J. Freeman,et al.  Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographic (EEG) potential , 1988 .

[66]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[67]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[68]  F. Ventriglia Computational simulation of activity of cortical-like neural systems , 1988 .

[69]  R. Verleger Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3 , 1988, Behavioral and Brain Sciences.

[70]  Robert Miller,et al.  Cortico-hippocampal interplay: Self-organizing phase-locked loops for indexing memory , 1989, Psychobiology.

[71]  D. Amit Modelling Brain Function: The World of Attractor Neural Networks , 1989 .

[72]  K. Ikeda,et al.  Maxwell-Bloch Turbulence , 1989 .

[73]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[74]  M. Stryker Is grandmother an oscillation? , 1989, Nature.

[75]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[76]  L. Ingber Very fast simulated re-annealing , 1989 .

[77]  T. Bullock,et al.  Lateral coherence of the electrocorticogram: a new measure of brain synchrony. , 1989, Electroencephalography and clinical neurophysiology.

[78]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[79]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[80]  F Ventriglia Activity in cortical-like neural systems: short-range effects and attention phenomena. , 1990, Bulletin of mathematical biology.

[81]  K. Kaneko Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements , 1990 .

[82]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[83]  Kaneko,et al.  Globally coupled chaos violates the law of large numbers but not the central-limit theorem. , 1990, Physical review letters.

[84]  Daniel J. Amit,et al.  Attractor neural networks with biological probe records , 1990 .

[85]  Paul L. Nunez,et al.  Multiple scales of statistical physics of the neocortex: Application to electroencephalography , 1990 .

[86]  Ingber,et al.  Statistical-mechanical aids to calculating term-structure models. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[87]  Yong Yao,et al.  Model of biological pattern recognition with spatially chaotic dynamics , 1990, Neural Networks.

[88]  M. Stewart,et al.  Do septal neurons pace the hippocampal theta rhythm? , 1990, Trends in Neurosciences.

[89]  Towards a kinetic theory of some global brain activities. , 1990, Acta neurologica.

[90]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[91]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[92]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals; dependence on state and brain site. , 1991, Electroencephalography and clinical neurophysiology.

[93]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[94]  Hermann Haken,et al.  Rhythms in Physiological Systems , 1991 .

[95]  D. Amit,et al.  Quantitative study of attractor neural networks retrieving at low spike rates: II. Low-rate retrieval in symmetric networks , 1991 .

[96]  Armin Fuchs,et al.  Spatio-Temporal EEG Patterns , 1991 .

[97]  Walter J. Freeman,et al.  Asymmetric sigmoid non-linearity in the rat olfactory system , 1991, Brain Research.

[98]  J. J. Wright,et al.  Radial coherence, wave velocity and damping of electrocortical waves. , 1991, Electroencephalography and clinical neurophysiology.

[99]  Ingber,et al.  Statistical mechanics of neocortical interactions: A scaling paradigm applied to electroencephalography. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[100]  Arun V. Holden,et al.  Mathematical approaches to brain functioning diagnostics , 1991 .

[101]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[102]  Ichiro Tsuda Chaotic Neural Networks and Thesaurus , 1991 .

[103]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[104]  Hans Liljenström Modeling the Dynamics of Olfactory Cortex Using Simplified Network Units and Realistic Architecture , 1991, Int. J. Neural Syst..

[105]  M Molnár,et al.  Low-dimensional chaos in event-related brain potentials. , 1992, The International journal of neuroscience.

[106]  T. Bullock,et al.  Induced Rhythms in the Brain , 1992, Brain Dynamics.

[107]  Stanislas Dehaene,et al.  Stabilization of complex input-output functions in neural clusters formed by synapse selection , 1992, Neural Networks.

[108]  K. Kaneko Mean field fluctuation of a network of chaotic elements: Remaining fluctuation and correlation in the large size limit , 1992 .

[109]  Ingber,et al.  Generic mesoscopic neural networks based on statistical mechanics of neocortical interactions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[110]  Mark Molnar,et al.  Application of chaos theory to biology and medicine , 1992, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[111]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[112]  Walter J. Freeman,et al.  TUTORIAL ON NEUROBIOLOGY: FROM SINGLE NEURONS TO BRAIN CHAOS , 1992 .

[113]  J. Bower,et al.  Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. , 1992, Journal of neurophysiology.

[114]  K. Oka,et al.  Long-term transformation of an inhibitory into an excitatory GABAergic synaptic response. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Robbie Case,et al.  The role of the frontal lobes in the regulation of cognitive development , 1992, Brain and Cognition.

[116]  Ichiro Tsuda,et al.  Dynamic link of memory--Chaotic memory map in nonequilibrium neural networks , 1992, Neural Networks.

[117]  H. Haken,et al.  PHASE TRANSITIONS IN THE HUMAN BRAIN: SPATIAL MODE DYNAMICS , 1992 .

[118]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[119]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[120]  L. Ingber Adaptive Simulated Annealing (ASA) , 1993 .

[121]  Ramesh Srinivasan,et al.  Implications of recording strategy for estimates of neocortical dynamics with electroencephalography. , 1993, Chaos.

[122]  Marvin Minsky,et al.  Allen Newell, Unified Theories of Cognition , 1993, Artif. Intell..

[123]  Robert A. M. Gregson,et al.  Cognitive load as a determinant of the dimensionality of the electroencephalogram: A replication study , 1993, Biological Psychology.

[124]  Daniel J. Amit,et al.  Conversion of Temporal Correlations Between Stimuli to Spatial Correlations Between Attractors , 1999, Neural Computation.

[125]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Ichiro Tsuda,et al.  Can stochastic renewal of maps be a model for cerebral cortex , 1993 .

[127]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[128]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[129]  E. Brazhnik,et al.  Acetylcholine, theta-rhythm and activity of hippocampal neurons in the rabbit—III. Cortical input , 1993, Neuroscience.

[130]  A. Aertsen,et al.  Response synchronization in the visual cortex , 1993, Current Opinion in Neurobiology.

[131]  [Formation of rhythmic processes in the bioelectrical activity of the cerebral cortex]. , 1994, Biofizika.

[132]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Robert Miller,et al.  WHAT IS THE CONTRIBUTION OF AXONAL CONDUCTION DELAY TO TEMPORAL STRUCTURE IN BRAIN DYNAMICS , 1994 .

[134]  Formation of rhythmic processes in the bioelectrical activity of the cerebral cortex , 1994 .

[135]  David Ruelle,et al.  Where Can One Hope to Profitably Apply the Ideas of Chaos , 1994 .

[136]  H. Liljenström,et al.  Regulating the nonlinear dynamics of olfactory cortex , 1994 .

[137]  James E. Skinner,et al.  The point correlation dimension: Performance with nonstationary surrogate data and noise , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[138]  David T. J. Liley,et al.  A millimetric-scale simulation of electrocortical wave dynamics based on anatomical estimates of cortical synaptic density , 1994 .

[139]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[140]  Daniel G. Bobrow,et al.  Book Review: Allen Newell, Unified Theories of Cognition , 1994 .

[141]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[142]  Almut Schüz,et al.  Patchiness as a means to get a message across , 1994, Trends in Neurosciences.

[143]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[144]  Robert Miller AN INTERPRETATION, BASED ON CELL ASSEMBLY THEORY, OF THE PSYCHOLOGICAL IMPAIRMENTS FOLLOWING LESIONS OF THE HIPPOCAMPUS AND RELATED STRUCTURES , 1994 .

[145]  A Babloyantz,et al.  Computation with chaos: a paradigm for cortical activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[146]  T. Elbert,et al.  Oscillatory Event-Related Brain Dynamics , 1994, NATO ASI Series.

[147]  F Wilczek A call for a new physics. , 1994, Science.

[148]  Reinhard Eckhorn Oscillatory and Non-Oscillatory Synchronizations in the Visual Cortex of Cat and Monkey , 1994 .

[149]  M. Palu,et al.  Nonlinearity in Normal Human EEG : Cycles and randomness , not chaos Milan Palu , 1994 .

[150]  Ingber,et al.  Statistical mechanics of neocortical interactions: Path-integral evolution of short-term memory. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[151]  M Abeles,et al.  Synchronization in neuronal transmission and its importance for information processing. , 1994, Progress in brain research.

[152]  E. Vaadia,et al.  Synchronization in neuronal transmission and its importance for information processing. , 1994 .

[153]  H. Swadlow Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. , 1994, Journal of neurophysiology.

[154]  J. E. Skinner,et al.  Chaos and physiology: deterministic chaos in excitable cell assemblies. , 1994, Physiological reviews.

[155]  D. Liley,et al.  Computer simulation of electrocortical activity at millimetric scale. , 1994, Electroencephalography and clinical neurophysiology.

[156]  Walter J. Freeman,et al.  Neural mechanisms underlying destabilization of cortex by sensory input , 1994 .

[157]  P. Nunez,et al.  A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. , 1994, Electroencephalography and clinical neurophysiology.

[158]  M. Molnár,et al.  On the origin of the P3 event-related potential component. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[159]  Z J Kowalik,et al.  Testing the determinism of EEG and MEG , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[160]  William H. Calvin,et al.  Conversations With Neil's Brain: The Neural Nature Of Thought And Language , 1994 .

[161]  W. Freeman,et al.  Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex , 1994 .

[162]  S MilanPalu Nonlinearity in Normal Human EEG: Cycles and Randomness, Not Chaos , 1994 .

[163]  W. Singer,et al.  Temporal Coding in the Brain , 1994, Research and Perspectives in Neurosciences.

[164]  S. Schulman The Astonishing Hypothesis: The Scientific Search for the Soul , 1994 .

[165]  James J. Wright,et al.  Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry , 1994 .

[166]  David T. J. Liley Models of electrocortical dynamics. , 1995 .

[167]  George Ruppeiner,et al.  Riemannian geometry in thermodynamic fluctuation theory , 1995 .

[168]  W. Pritchard,et al.  Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. , 1995, Psychophysiology.

[169]  D. Amit The Hebbian paradigm reintegrated: Local reverberations as internal representations , 1995, Behavioral and Brain Sciences.

[170]  W. Freeman Societies of Brains: A Study in the Neuroscience of Love and Hate. By W. J. Freeman. Erlbaum: Hillsdale, NJ. 1994. , 1997, Psychological Medicine.

[171]  Péter Érdi,et al.  Chaos and learning in the olfactory bulb , 1995, Int. J. Intell. Syst..

[172]  Hans Liljenström,et al.  Noise-enhanced performance in a cortical associative memory model , 1995, Int. J. Neural Syst..

[173]  T. Bullock,et al.  EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. , 1995, Electroencephalography and clinical neurophysiology.

[174]  Ingber,et al.  Statistical mechanics of neocortical interactions: Constraints on 40-Hz models of short-term memory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[175]  Robin Robertson,et al.  Chaos theory in Psychology and the Life Sciences , 1995 .

[176]  T. Bullock,et al.  Temporal fluctuations in coherence of brain waves. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[177]  M. Hasselmo,et al.  Cholinergic modulation of cortical oscillatory dynamics. , 1995, Journal of neurophysiology.

[178]  W. Freeman,et al.  COMPARISON OF EEG TIME SERIES FROM RAT OLFACTORY SYSTEM WITH MODEL COMPOSED OF NONLINEAR COUPLED OSCILLATORS , 1995 .

[179]  L. Ingber Statistical mechanics of multiple scales of neocortical interactions , 1995 .

[180]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[181]  Nicolas Brunel,et al.  Global Spontaneous Activity and Local Structured (learned) Delay Activity in Cortex , 1995 .

[182]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[183]  Colin G. Ellard,et al.  Context and consciousness , 1995, Behavioral and Brain Sciences.

[184]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[185]  Walter J. Freeman,et al.  Chaos in the brain: Possible roles in biological intelligence , 1995, Int. J. Intell. Syst..

[186]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[187]  M Molnár,et al.  Correlation dimension changes accompanying the occurrence of the mismatch negativity and the P3 event-related potential component. , 1995, Electroencephalography and clinical neurophysiology.

[188]  Ingber,et al.  Statistical mechanics of neocortical interactions: High-resolution path-integral calculation of short-term memory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[189]  David T. J. Liley,et al.  Simulation of electrocortical waves , 1995, Biological Cybernetics.

[190]  A Oliver,et al.  The emergence of hierarchical clustered representations in a Hebbian neural network model that simulates aspects of development in the neocortex. , 1996, Network.

[191]  Ramesh Srinivasan,et al.  Path-integral evolution of chaos embedded in noise: Duffing neocortical analog , 1996 .

[192]  Lester Ingber,et al.  Statistical Mechanics of Nonlinear Nonequilibrium Financial Markets: Applications to Optimized Trading , 1996 .

[193]  Moh’d A. Al-Nimr,et al.  A THEORETICAL AND EXPERIMENTAL STUDY , 1996 .

[194]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[195]  Lester Ingber,et al.  Trading markets with canonical momenta and adaptive simulated annealing , 1996 .

[196]  Michael Nicholls,et al.  Axonal conduction time and human cerebral laterality: A psychobiological theory Robert Miller, Harwood Academic Publishers, Netherlands , 1997, Neuropsychologia.

[197]  Lester Ingber Canonical Momenta Indicators of Financial Markets and Neocortical Eeg , 1997 .