Pharmacogenetic activation of parvalbumin interneurons in the prefrontal cortex rescues cognitive deficits induced by adolescent MK801 administration

[1]  Jesse D. Marshall,et al.  Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning , 2020, Nature Neuroscience.

[2]  Wenjun Gao,et al.  Conditional GSK3β deletion in parvalbumin-expressing interneurons potentiates excitatory synaptic function and learning in adult mice , 2020, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[3]  M. Caron,et al.  Deletion of Glycogen Synthase Kinase-3β in D2 Receptor–Positive Neurons Ameliorates Cognitive Impairment via NMDA Receptor–Dependent Synaptic Plasticity , 2019, Biological Psychiatry.

[4]  O. Howes,et al.  Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies , 2019, Journal of Neural Transmission.

[5]  P. Caroni,et al.  Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model , 2019, Cell.

[6]  J. Rubenstein,et al.  Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders , 2019, Molecular Psychiatry.

[7]  Alan Carleton,et al.  Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia , 2018, Nature Neuroscience.

[8]  Wenjun Gao,et al.  PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders , 2018, Front. Neural Circuits.

[9]  Wenjun Gao,et al.  Thalamic Control of Cognition and Social Behavior Via Regulation of Gamma-Aminobutyric Acidergic Signaling and Excitation/Inhibition Balance in the Medial Prefrontal Cortex , 2017, Biological Psychiatry.

[10]  S. Kroener,et al.  Ketamine Administration During the Second Postnatal Week Alters Synaptic Properties of Fast-Spiking Interneurons in the Medial Prefrontal Cortex of Adult Mice. , 2016, Cerebral cortex.

[11]  K. Fish,et al.  Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia , 2016, Neuropsychopharmacology.

[12]  Alan S. Brown,et al.  Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons , 2015, Molecular Psychiatry.

[13]  A. Sampson,et al.  Dysregulated ErbB4 Splicing in Schizophrenia: Selective Effects on Parvalbumin Expression. , 2015, The American journal of psychiatry.

[14]  S. Kroener,et al.  Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice , 2015, Behavioural Brain Research.

[15]  Renee Hoch,et al.  Gamma Rhythms Link Prefrontal Interneuron Dysfunction with Cognitive Inflexibility in Dlx5/6 +/− Mice , 2015, Neuron.

[16]  S. Floresco,et al.  Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory , 2014, The international journal of neuropsychopharmacology.

[17]  Michael F. Green,et al.  Cognition in schizophrenia: Past, present, and future , 2014, Schizophrenia Research: Cognition.

[18]  V. Brown,et al.  Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats , 2012, The European journal of neuroscience.

[19]  K. Nakazawa,et al.  GABAergic interneuron origin of schizophrenia pathophysiology , 2012, Neuropharmacology.

[20]  Wenjun Gao,et al.  Prolonged exposure to NMDAR antagonist induces cell-type specific changes of glutamatergic receptors in rat prefrontal cortex , 2012, Neuropharmacology.

[21]  David A. Lewis,et al.  Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia , 2012, Trends in Neurosciences.

[22]  R. Gur,et al.  Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia , 2011, Proceedings of the National Academy of Sciences.

[23]  A. Sampson,et al.  Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. , 2011, The American journal of psychiatry.

[24]  J. Shumsky,et al.  Group II Metabotropic Glutamate Receptor Agonist Ameliorates MK801-Induced Dysfunction of NMDA Receptors via the Akt/GSK-3β Pathway in Adult Rat Prefrontal Cortex , 2011, Neuropsychopharmacology.

[25]  K. Allott,et al.  Cognition at illness onset as a predictor of later functional outcome in early psychosis: Systematic review and methodological critique , 2011, Schizophrenia Research.

[26]  D. Lewis,et al.  Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia , 2010, Current psychiatry reports.

[27]  O. Marín,et al.  Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling , 2010, Nature.

[28]  Xin-Hong Zhu,et al.  Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[29]  Anthony A. Grace,et al.  Gestational methylazoxymethanol acetate administration: A developmental disruption model of schizophrenia , 2009, Behavioural Brain Research.

[30]  Edward M. Callaway,et al.  Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types , 2009, Frontiers in neural circuits.

[31]  J. Houlé,et al.  NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: Application of laser microdissection technique , 2009, Journal of Neuroscience Methods.

[32]  L. Mei,et al.  Neuregulin 1 in neural development, synaptic plasticity and schizophrenia , 2008, Nature Reviews Neuroscience.

[33]  H. Akiyama,et al.  Changes in density of calcium‐binding‐protein‐immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder , 2008, Neuropathology : official journal of the Japanese Society of Neuropathology.

[34]  Philip D. Harvey,et al.  Predicting Schizophrenia Patients’ Real-World Behavior with Specific Neuropsychological and Functional Capacity Measures , 2008, Biological Psychiatry.

[35]  D. Rujescu,et al.  Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism , 2007, Schizophrenia Research.

[36]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[37]  F. Sharp,et al.  Atypical Antipsychotics and a Src Kinase Inhibitor (PP1) Prevent Cortical Injury Produced by the Psychomimetic, Noncompetitive NMDA Receptor Antagonist MK-801 , 2006, Neuropsychopharmacology.

[38]  Hideo Tsukada,et al.  Chronic NMDA Antagonism Impairs Working Memory, Decreases Extracellular Dopamine, and Increases D1 Receptor Binding in Prefrontal Cortex of Conscious Monkeys , 2005, Neuropsychopharmacology.

[39]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[40]  W. Fenton,et al.  Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia , 2004, Schizophrenia Research.

[41]  P. Tooney,et al.  Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia , 2004, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[42]  V. Brown,et al.  Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat , 2003, Behavioural Brain Research.

[43]  Morgan D. Barense,et al.  Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. , 2002, Learning & memory.

[44]  B. Moghaddam,et al.  Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task , 2001, Psychopharmacology.

[45]  A. Crider Perseveration in schizophrenia. , 1997, Schizophrenia bulletin.

[46]  A C Roberts,et al.  Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. , 1996, Behavioral neuroscience.

[47]  E. G. Jones,et al.  Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[49]  J. Olney,et al.  Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: Potential relevance to schizophrenia? , 1995, Biological Psychiatry.

[50]  J. Olney,et al.  Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. , 1989, Science.

[51]  Howard Eichenbaum,et al.  Reexamination of functional subdivisions of the rodent prefrontal cortex , 1983, Experimental Neurology.

[52]  M. Mishkin,et al.  Limbic lesions and the problem of stimulus--reinforcement associations. , 1972, Experimental neurology.