Partial factorizations of products of binomial coefficients

Let [Formula: see text] the product of the elements of the [Formula: see text]th row of Pascal’s triangle. This paper studies the partial factorizations of [Formula: see text] given by the product [Formula: see text] of all prime factors [Formula: see text] of [Formula: see text] having [Formula: see text], counted with multiplicity. It shows [Formula: see text] as [Formula: see text] for a limit function [Formula: see text] defined for [Formula: see text]. The main results are deduced from study of functions [Formula: see text] that encode statistics of the base [Formula: see text] radix expansions of the integer [Formula: see text] (and smaller integers), where the base [Formula: see text] ranges over primes [Formula: see text]. Asymptotics of [Formula: see text] and [Formula: see text] are derived using the prime number theorem with remainder term or conditionally on the Riemann hypothesis.

[1]  The Prime Number Theorem from logn , 1964 .

[2]  L. E. Bush An Asymptotic Formula for the Average Sum of the Digits of Integers , 1940 .

[3]  Andrew Granville,et al.  Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients , 1996 .

[4]  G. Tenenbaum Introduction to Analytic and Probabilistic Number Theory , 1995 .

[5]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[6]  J. Barkley Rosser,et al.  Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .

[7]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[8]  H. Davenport Multiplicative Number Theory , 1967 .

[9]  Helmut Prodinger,et al.  Mellin Transforms and Asymptotics: Digital Sums , 1994, Theor. Comput. Sci..

[10]  Hsien-Kuei Hwang,et al.  Digital Sums and Divide-and-Conquer Recurrences: Fourier Expansions and Absolute Convergence , 2005 .

[11]  Carl Pomerance Divisors of the Middle Binomial Coefficient , 2015, Am. Math. Mon..

[12]  Jeffrey C. Lagarias,et al.  Products of Farey Fractions , 2017, Exp. Math..

[13]  Tchébichef,et al.  Mémoire sur les nombres premiers. , 1852 .

[14]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[15]  Imre Z. Ruzsa,et al.  Erdős and the Integers , 1999 .

[16]  Serge Tabachnikov,et al.  Arithmetical properties of binomial coefficients , 2007 .

[17]  Louis H. Y. Chen,et al.  Distribution of the sum-of-digits function of random integers: A survey , 2012, 1212.6697.

[18]  Paul Erdös Some of My Favorite Problems and Results , 2013, The Mathematics of Paul Erdős I.

[19]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[20]  M. P. Drazin,et al.  On the decimal representation of integers , 1952 .

[21]  R. Lathe Phd by thesis , 1988, Nature.

[22]  Paul Erdös,et al.  On a Problem of Additive Number Theory , 1956 .

[23]  K. Soundararajan THE DISTRIBUTION OF PRIME NUMBERS , 2006, math/0606408.

[24]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[25]  J. R. Trollope An Explicit Expression for Binary Digital Sums , 1968 .

[26]  Harold G. Diamond,et al.  An elementary proof of the prime number theorem with a remainder term , 1970 .

[27]  Harold G. Diamond,et al.  Elementary methods in the study of the distribution of prime numbers , 1982 .

[28]  W. Lu On the Elementary Proof of the Prime Number Theorem with a Remainder Term , 1999 .

[29]  R. Bellman,et al.  On a Problem in Additive Number Theory , 1948 .

[30]  J. Lagarias,et al.  Products of binomial coefficients and unreduced Farey fractions , 2014, 1409.4145.

[31]  J. Lagarias Euler's constant: Euler's work and modern developments , 2013, 1303.1856.

[32]  E. Artin,et al.  Axiomatic characterization of fields by the product formula for valuations , 1945 .