Adaptive XGBoost for Evolving Data Streams
暂无分享,去创建一个
Albert Bifet | Talel Abdessalem | Jacob Montiel | Bernhard Pfahringer | Eibe Frank | Rory Mitchell | A. Bifet | B. Pfahringer | T. Abdessalem | Eibe Frank | Rory Mitchell | Jacob Montiel | E. Frank
[1] Geoff Holmes,et al. Leveraging Bagging for Evolving Data Streams , 2010, ECML/PKDD.
[2] A. P. Dawid,et al. Present position and potential developments: some personal views , 1984 .
[3] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[4] Geoff Holmes,et al. Ensembles of Restricted Hoeffding Trees , 2012, TIST.
[5] William Nick Street,et al. A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.
[6] Geoff Holmes,et al. MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..
[7] Geoff Holmes,et al. Racing Committees for Large Datasets , 2002, Discovery Science.
[8] Talel Abdessalem,et al. Scikit-Multiflow: A Multi-output Streaming Framework , 2018, J. Mach. Learn. Res..
[9] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.
[10] Geoff Hulten,et al. Mining time-changing data streams , 2001, KDD '01.
[11] Vasant Honavar,et al. Learn++: an incremental learning algorithm for supervised neural networks , 2001, IEEE Trans. Syst. Man Cybern. Part C.
[12] Talel Abdessalem,et al. Adaptive random forests for evolving data stream classification , 2017, Machine Learning.
[13] Isabelle Guyon,et al. Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark , 2007, Pattern Recognit. Lett..
[14] S. García,et al. An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .
[15] Leo Breiman,et al. Pasting Small Votes for Classification in Large Databases and On-Line , 1999, Machine Learning.
[16] Stuart J. Russell,et al. Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.
[17] Philip S. Yu,et al. Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.
[18] Philip S. Yu,et al. A Framework for Clustering Evolving Data Streams , 2003, VLDB.
[19] Ricard Gavaldà,et al. Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.
[20] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[21] Heiko Wersing,et al. KNN Classifier with Self Adjusting Memory for Heterogeneous Concept Drift , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).
[22] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[23] Geoff Holmes,et al. Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data , 2012, IDA.